• Title/Summary/Keyword: Actual System Trajectory

Search Result 67, Processing Time 0.027 seconds

TRAJECTORY CONTROL OF ROBOT MANIPULATORS USING VSS THEDORY smoothing modification : SMOOTHING MODIFICATION

  • Hideki Hashimoto;Sim, Kwee-Bo;Jianxin Xu;F. Harashima
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.898-904
    • /
    • 1987
  • A new control algorithm using the VSS theory is developed for accurate trajectory control of robot manipulators. This paper focuses on the implementation of VSS controller with smoothing laws in the design of effective tracking control for robotic arms. The VSS controller for multi-linkage robot arm is realized using balance condition and its simplification which possesses powerful smoothing capability to reduce or even remove undesirable chattering and meanwhile keep the robust characteristic to reject system uncertainties. The design principle of selecting different smoothing methods, which aims at achieving trade-off between smoothing and robust behaviors while considering the actual system constraints, is also given and further confirmed through experimental results.

  • PDF

Sliding Mode Control for Attitude Tracking of Thruster-Controlled Spacecraft

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.257-261
    • /
    • 2001
  • Nonlinear pulse width modulation (PWM) controlled system is considered to achieve control performance of thruster controlled spacecraft. The actual PWM controlled motions occur, very closely, around the average model trajectory. Furthermore nonlinear PWM controller design can be directly applied to thruster controlled spacecraft to determine thruster on-time. Sliding mode control for attitude tracking of three-axis thruster-controlled spacecraft is presented. Simulation results are shown which use modified Rodrigues parameters and sliding mode control law to achieve attitude tracking of a three-axis spacecraft with thrusters.

  • PDF

A PC Operated Off-Line Programming System for SCARA Robots (PC에서 운용되는 스카라형 로보트의 오프-라인 프로그래밍 시스템)

  • Park, Min-Jo;Son, Kwon;Ahn, Doo-Sung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.568-579
    • /
    • 1995
  • An off-line programming (OLP) system was proposed and developed in order to save cost and time in adjusting a robot to new workcells or applying new algorithms to actual trajectory planning. The developed OLP system was especially designed to be operated in a PC level host computer. A SCARA robot with four axes was selected as an objective robot. The OLP system developed in this study consisted of such modules as data base, three-dimensional graphics, kinematics, trajectory planning, dynamics, control, and commands. Each module was constructed to form an independent unit so that it can be easily modified or improved. The OLP system was programmed for a graphic user interface in Borland $C^{++}$ language. Some of system operating commands and an interpreter were devised and used for more convenient programming of robot simulations.s.

Analysis of Market Trajectory Data using k-NN

  • Park, So-Hyun;Ihm, Sun-Young;Park, Young-Ho
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.195-200
    • /
    • 2018
  • Recently, as the sensor and big data analysis technology have been developed, there have been a lot of researches that analyze the purchase-related data such as the trajectory information and the stay time. Such purchase-related data is usefully used for the purchase pattern prediction and the purchase time prediction. Because it is difficult to find periodic patterns in large-scale human data, it is necessary to look at actual data sets, find various feature patterns, and then apply a machine learning algorithm appropriate to the pattern and purpose. Although existing papers have been used to analyze data using various machine learning methods, there is a lack of statistical analysis such as finding feature patterns before applying the machine learning algorithm. Therefore, we analyze the purchasing data of Songjeong Maeil Market, which is a data gathering place, and finds some characteristic patterns through statistical data analysis. Based on the results of 1, we derive meaningful conclusions by applying the machine learning algorithm and present future research directions. Through the data analysis, it was confirmed that the number of visits was different according to the regional characteristics around Songjeong Maeil Market, and the distribution of time spent by consumers could be grasped.

A Finite Impulse Response Fixed-lag Smoother for Discrete-time Nonlinear Systems (이산 비선형 시스템에 대한 유한 임펄스 응답 고정 시간 지연 평활기)

  • Kwon, Bo-Kyu;Han, Sekyung;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.807-810
    • /
    • 2015
  • In this paper, a finite impulse response(FIR) fixed-lag smoother is proposed for discrete-time nonlinear systems. If the actual state trajectory is sufficiently close to the nominal state trajectory, the nonlinear system model can be divided into two parts: The error-state model and the nominal model. The error state can be estimated by adapting the optimal time-varying FIR smoother to the error-state model, and the nominal state can be obtained directly from the nominal trajectory model. Moreover, in order to obtain more robust estimates, the linearization errors are considered as a linear function of the estimation errors. Since the proposed estimator has an FIR structure, the proposed smoother can be expected to have better estimation performance than the IIR-structured estimators in terms of robustness and fast convergence. Additionally the proposed method can give a more general solution than the optimal FIR filtering approach, since the optimal FIR smoother is reduced to the optimal FIR filter by setting the fixed-lag size as zero. To illustrate the performance of the proposed method, simulation results are presented by comparing the method with an optimal FIR filtering approach and linearized Kalman filter.

Muscle Stiffness based Intent Recognition Method for Controlling Wearable Robot (착용형 로봇을 제어하기 위한 근경도 기반의 의도 인식 방법)

  • Yuna Choi;Junsik Kim;Daehun Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • This paper recognizes the motion intention of the wearer using a muscle stiffness sensor and proposes a control system for a wearable robot based on this. The proposed system recognizes the onset time of the motion using sensor data, determines the assistance mode, and provides assistive torque to the hip flexion/extension motion of the wearer through the generated reference trajectory according to the determined mode. The onset time of motion was detected using the CUSUM algorithm from the muscle stiffness sensor, and by comparing the detection results of the onset time with the EMG sensor and IMU, it verified its applicability as an input device for recognizing the intention of the wearer before motion. In addition, the stability of the proposed method was confirmed by comparing the results detected according to the walking speed of two subjects (1 male and 1 female). Based on these results, the assistance mode (gait assistance mode and muscle strengthening mode) was determined based on the detection results of onset time, and a reference trajectory was generated through cubic spline interpolation according to the determined assistance mode. And, the practicality of the proposed system was also confirmed by applying it to an actual wearable robot.

Application of neural network for airship take-off and landing system by buoyancy change

  • Chang, Yong-Jin;Woo, Gui-Aee;Kim, Jong-Kwon;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.333-336
    • /
    • 2003
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn’t give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed.

  • PDF

Accurate Control Position of Belt Drives under Acceleration and Velocity Constraints

  • Jayawardene, T.S.S.;Nakamura, Masatoshi;Goto, Satoru
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.474-483
    • /
    • 2003
  • Belt drives provide freedom to position the motor relative to the load and this phenomenon enables reduction of the robot arm inertia. It also facilitates quick response when employed in robotics. Unfortunately, the flexible dynamics deteriorates the positioning accuracy. Therefore, there exists a trade-off between the simplicity of the control strategy to reject time varying disturbance caused by flexibility of the belt and precision in performance. Resonance of the system further leads to vibrations and poor accuracy in positioning. In this paper, accurate positioning of a belt driven mechanism using a feed-forward compensator under maximum acceleration and velocity constraints is proposed. The proposed method plans the desired trajectory and modifies it to compensate delay dynamics and vibration. Being an offline method, the proposed method could be easily and effectively adopted to the existing systems without any modification of the hardware setup. The effectiveness of the proposed method was proven by experiments carried out with an actual belt driven system. The accuracy of the simulation study based on numerical methods was also verified with the analytical solutions derived.

Integrated Task Planning based on Mobility of Mobile Manipulator (M2) Platform

  • Jin, Tae-Seok;Kim, Hyun-Sik;Kim, Jong-Wook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.206-212
    • /
    • 2009
  • This paper presents an optimized integrated task planning and control approach for manipulating a nonholonomic robot by mobile manipulators. Then, we derive a kinematics model and a mobility of the mobile manipulator(M2) platform considering it as the combined system of the manipulator and the mobile robot. to improve task execution efficiency utilizing the redundancy, optimal trajectory of the mobile manipulator(M2) platform are maintained while it is moving to a new task point. A cost function for optimality can be defined as a combination of the square errors of the desired and actual configurations of the mobile robot and of the task robot. In the combination of the two square errors, a newly defined mobility of a mobile robot is utilized as a weighting index. With the aid of the gradient method, the cost function is minimized, so the path trajectory that the M2 platform generates is optimized. The simulation results of the 2 ink planar nonholonomic M2 platform are given to show the effectiveness of the proposed algorithm.

The control of an upper extremity exoskeleton for stroke rehabilitation: An active force control scheme approach

  • Majeed, Anwar P.P. Abdul;Taha, Zahari;Abdullah, Muhammad Amirul;Azmi, Kamil Zakwan Mohd;Zakaria, Muhammad Aizzat
    • Advances in robotics research
    • /
    • v.2 no.3
    • /
    • pp.237-245
    • /
    • 2018
  • This study evaluates the efficacy of a class robust control scheme namely active force control in performing a joint based trajectory tracking of an upper limb exoskeleton in rehabilitating the elbow joint. The plant of the exoskeleton system is obtained via system identification method whilst the PD gains were tuned heuristically. The estimated inertial parameter that enables the AFC disturbance rejection effect is attained by means of a non-nature based metaheuristic optimisation technique known as simulated Kalman filter (SKF). It was demonstrated from the present investigation that the proposed PDAFC scheme outperformed the classical PD algorithm in tracking the prescribed trajectory both in the presence and without the presence of disturbance attributed by the mannequin limb weights (1 kg and 1.5 kg) that mimics the weight of actual human limb weight. Therefore, it is apparent from the results obtained from the present study that the proposed control scheme, i.e., PDAFC is suitable for the application of exoskeleton for stroke rehabilitation.