• 제목/요약/키워드: Activity of cement

검색결과 127건 처리시간 0.025초

활성백토를 흡착재로 활용한 경화체의 실내 공기 개선 평가 (Evaluation of Indoor Air Improvement of Matrix Using Activated clay as Adsorption Material)

  • 정현수;김연호;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.189-190
    • /
    • 2020
  • The importance of indoor air quality management has recently been highlighted due to environmental problems such as indoor air pollution. Among indoor air pollutants, carbon dioxide occurs in cooking, heating, burning, and causes forgetfulness, dementia and amnesia. Radon, which occurs in building materials, soil and ground, is a type 1 carcinogen that causes lung cancer in the body through breathing. These substances can be released from the room through ventilation, but there is a limit to reducing the amount of indoor activity due to reduced ventilation conditions due to increased indoor activity time. However, these substances can be removed from the gas by adsorption. The purpose of this study was to identify the properties of granular active and powdered active white soil and mix them to make cement-based active white soil adsorbent matrix for carbon dioxide, fine dust and radon gas adsorption, and to evaluate indoor air improvements according to the mixing scale. The results of the experiment showed that active carbon dioxide adsorption performance increased for carbon dioxide and radon as the exchange rate increased through physical adsorption. In particular, the higher the replacement rate of the granular active bag, the better adsorption performance was shown.

  • PDF

광촉매 TiO2 루타일 타입 치환율에 따른 미세먼지 흡착형 경화체의 강도 특성 (Strength Properties of Fine Dust Adsorption Matrix using Photocatalyst TiO2 Rutile Replacement Ratio)

  • 경인수;이원규;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.174-175
    • /
    • 2019
  • Recently, due to air pollution caused by fine dust, it is considered as a social problem. Increasing fine dust has intensified air pollution, causing many diseases and damages. This year, Seoul, South Korea, reached a severe level of fine dust pollution worldwide. The Ministry of Environment has strengthened the environmental standard for fine dust (PM2.5) from $50{\mu}g/m^3$ to $35{\mu}g/m^3$ since March 2018. When fine dust enters the human body, it causes bronchial or skin elongation such as respiratory allergies, irritable pneumonia, asthma and atopy. In this study, $TiO_2$ rutile with photocatalytic activity was used, and materials prepared by rutile sulfuric acid method were used. The photocatalytic activity rate is 95% or more and the density is $4.1g/cm^3$. The matrix was based on cement, and the substitution rate of $TiO_2$ was 0, 5, 10, 15, 20 (%). The test item is flexural strength and compressive strength.

  • PDF

초연약지반 표층처리를 위한 SCS의 적용성 조사 연구 (A Study on the Application of SCS for the Surface Stabilization of Ultra-soft Ground)

  • 천병식;양형칠;유영남
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.425-428
    • /
    • 2005
  • To resolve land demand by the development of various industries and the cityward tendency of population, the construction of ultra-soft ground that is unused in the past has been progressing with activity. The ultra-soft ground has very small shear strength and large deformation, so leads to many problems in ground improvement in construction. In order to dispose of these problems, it is necessary to develope the chemical materials that can be applied to the surface stabilization of ultra-soft ground. In this study, the new ground treatment that is using cement and SCS is compared, analyzed with existing ground treatment. In addition, through the laboratory tests that check the characteristic of congealment and strength, the application of SCS in field is affirmed.

  • PDF

Fire resistance and residual strength of reactive powder concrete Using metakaolin

  • Jang, Hongseok;Yi, Jebang;So, Seungyoung
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.657-669
    • /
    • 2020
  • This study investigates the fire resistance characteristics of reactive powder concrete according to changes in the cement content per unit area, mixing ratio of metakaolin (MK), and content of polypropylene fiber. A fire test was conducted, and the resulting residual strength characteristics were investigated through flexural and compressive strength measurements, as well as condition rating classification based on visual evaluation. MK effectively reduced the initial high content of calcium hydroxide, thereby reducing the water vapor pressure generated during pyrolysis and slowing spalling. Furthermore, the pore structure and loose tissue were effective for relieving the water vapor pressure in the event of a fire.

섬유보강 고강도 콘크리트의 내구성능 향상에 관한 검토 (Investigation on Improve Durability of Fiber-Reinforced High-Strength concrete)

  • 이혜진;하정수;김규진;이영도;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.93-95
    • /
    • 2013
  • Recently, with the increase in the construction of ultra-high buildings and long-span structures, there is great demand for high-strength concrete which can reduce the structural weight and thickness of member sections. While developing high-strength concrete to meet performance requirements, certain issues at the design stage must also be considered. The issues include diseconomy from a great amount of per-unit cement, spalling failure by fire at ultra-high building, autogenous shrinkage caused by increased hydration activity of binder from use of a superplasticizer. Therefore, the purpose of this study is examined the strain characteristics of Fiber-reinforced-high-strength concrete(FRHSC), which differ from those of general concrete owing to autogenous shrinkage. Based on the experimental data, we proposed an autogenous shrinkage prediction model.

  • PDF

알칼리 활성화 방법에 따른 고로슬래그 경화체 제조 연구 (Research for the production of blast furnace cement mortar using an alkaline activation method)

  • 신재란;이주열;박병현
    • 상하수도학회지
    • /
    • 제30권3호
    • /
    • pp.293-297
    • /
    • 2016
  • This study was performed in order to obtain the effect of the compressive strength of the cured product with manufacturing conditions (amounts of fine aggregate and different types of alkali activator). Material which is the basis of the cured product was used for the blast furnace slag, which has a latent hydraulic activity. Consequently, when using sodium hydroxide as the alkali activator, it is possible to obtain a higher compressive strength than using the calcium hydroxide. And also, it can be added a 10% of fine aggregate with blast furnace slag to improve the compressive strength.

알칼리 활성화된 도시 폐기물 소각재 모르타르의 특성 (Properties of Alkali Activated MSWI (Municipal Solid Waste Incinerator) Ash Mortar)

  • 조병완;구자갑;박승국;고희철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.773-776
    • /
    • 2005
  • MSWI ash is the residue from waste combustion processes at temperature between $850^{\circ}C\;and\;1000^{\circ}C$. And the main components of MSWI ash are $SiO_2,\;CaO\;and\;Al_2O_3$. The aim of this study is to find a way to useful application of MSWI ash(after treatment) as a structural material and to investigates the hydraulic activity, compressive strength development, composition variation of such chemicallyi-activated MSWI ashes concrete. And it was found that early cement hydration, followed by the breakdown and dissolving of the MSWI-ashes, enhanced the formation of calcium silicate hydrates(C-S-H), The XRD and SEM-EDS results indicate that, both the hydration degree and strength development are closely connected with a curing condition and a chemically-activator. Compressive strengths with values in the 40.5MFa were obtained after curing the activated MSWI ashes with NaOH+water glass at $90^{\circ}C$.

  • PDF

Apoptotic Effects of A Cisplatin and Eugenol Co-treatment of G361 Human Melanoma Cells

  • Park, Jun-Young;Jo, Jae-Beom;Kim, In-Ryoung;Kim, Gyoo-Cheon;Kwak, Hyun-Ho;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제36권3호
    • /
    • pp.155-162
    • /
    • 2011
  • Eugenol (4-allyl-2-methoxyphenol) is a naturally occurring phenolic compound that is widely used in dentistry as a component of zinc oxide eugenol cement that is commonly applied to the mouth environment. Cisplatin is one of the most potent known anticancer agents and shows significant clinical activity against a variety of solid tumors. This study was undertaken to investigate the synergistic apoptotic effects of co-treatments with eugenol and cisplatin on human melanoma (G361) cells. To investigate whether this co-treatment efficiently reduces the viability of G361 cells compared with each single treatment, an MTT assay was conducted. The induction and augmentation of apoptosis were confirmed by DNA electrophoresis, Hoechst staining and an analysis of DNA hypoploidy. Western blot analysis and immunofluorescent staining were also performed to evaluate the expression levels and the translocation of apoptosis-related proteins following this co-treatment. Furthermore, proteasome activity and mitochondrial membrane potential (MMP) changes were also assayed. The results indicated that a co-treatment with eugenol and cisplatin induced multiple pathways and processes associated with an apoptotic response in G361 cells including nuclear condensation, DNA fragmentation, a reduction in MMP and proteasome activity, the increase and decrease of Bax and Bcl-2, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, and the activation of caspase-9, caspase-7, caspase-3, PARP and DFF45 (ICAD). In contrast, separate treatments of 300 ${\mu}M$ eugenol or 3 ${\mu}M$ cisplatin for 24 h did not induce apoptosis. Our present data thus suggest that a combination therapy of eugenol and cisplatin is a potential treatment strategy for human melanoma.

The use of artificial neural networks in predicting ASR of concrete containing nano-silica

  • Tabatabaei, Ramin;Sanjaria, Hamid Reza;Shamsadini, Mohsen
    • Computers and Concrete
    • /
    • 제13권6호
    • /
    • pp.739-748
    • /
    • 2014
  • In this article, by using experimental studies and artificial neural network has been tried to investigate the use of nano-silica as concrete admixture to reduce alkali-silica reaction. If there are reactive aggregates and alkali of cement with enough moisture in concrete, a gel will be formed. Then with high reactivity between alkali of cement and existence of silica in aggregates, this gel will expand by absorption of water, and causes expansive pressure and cracks be formed. At the time passes, this gel will reduce both durability and strength of the concrete. By reducing the size of silicate to nano, specific surface area of particles and number of atoms on the surface will be increased, which causes more pozzolanic activity of them. Nano-silica can react with calcium hydroxide ($Ca(OH)_2$) and produces C-S-H gel. In this study, accelerated mortar bar specimens according to ASTM C 1260 and ASTM C 1567, with different mix proportions were prepared using aggregates of Kerman, such as: none admixture and plasticizer, different proportions of nano-silica separately. By opening the moulds after 24 hour and curing in water at $80^{\circ}C$ for 24 hour, then curing in (1N NaOH) at $80^{\circ}C$ for 14 days, length expansion of mortar bars were measured and compared. It was noted that, the lowest length expansion of a specimens shows the best proportion of admixture based on alkali-silica reactivity. Then, prediction of alkali-silica reaction of concrete has been investigated by using artificial neural network. In this study the backpropagation network has been used and compared with different algorithms to train network. Finally, the best amount of nano silica for adding to mix proportion, also the best algorithm and number of neurons in hidden layer of artificial neural network have been offered.

내해수성 주입재 배합에 관한 실험적 연구 (A Experimental Study on the Seawater Attack Resistance of Grouting Mixtures)

  • 천병식;최동찬;김영훈;김진춘
    • 한국지반환경공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.53-59
    • /
    • 2010
  • 해수 침적 조건에서 시멘트 수화물이 부식되는 화학적 열화과정은 콘크리트 구조물이나 주입공사 목적물에서 동일하다. 국내에서 사용되고 있는 MSG(Micro Silica Grouting)주입재는 실리카질 물질이 다량 함유된 혼합계 시멘트로서 분말도가 $8,000cm^2/g$ 이상으로 높기 때문에 수화활성도가 매우 크고, 고강도 및 고내구성을 특징으로 하며, $C_3A$ 함유량도 5% 이하로 내황산염시멘트 규격을 만족하는 내해수성 시멘트재로 평가된다. 따라서, 본 논문에서는 내해수성이 우수한 MSG와 국내에서 사용되고 있는 급결재를 조합하여 내해수성 특성을 실험적으로 평가하였다. 국내에서 일반적으로 규산계 고활성 급결재 또는 초속경시멘트계 무기질 급결재가 사용되고 있다. 이들 급결재와 MSG가 조합된 주입재의 호모겔 시편에 대해서 압축강도, 중량변화 및 길이변화 특성을 실험적으로 평가하여 내해수성이 우수한 주입재 조합을 제시하였다.