• 제목/요약/키워드: Activity detection

검색결과 1,150건 처리시간 0.022초

Robust Entropy Based Voice Activity Detection Using Parameter Reconstruction in Noisy Environment

  • Han, Hag-Yong;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Journal of information and communication convergence engineering
    • /
    • 제1권4호
    • /
    • pp.205-208
    • /
    • 2003
  • Voice activity detection is a important problem in the speech recognition and speech communication. This paper introduces new feature parameter which are reconstructed by spectral entropy of information theory for robust voice activity detection in the noise environment, then analyzes and compares it with energy method of voice activity detection and performance. In experiments, we confirmed that spectral entropy and its reconstructed parameter are superior than the energy method for robust voice activity detection in the various noise environment.

새로운 음성 활동 검출법에 의한 Boll의 스펙트럼 차감 알고리즘 (Boll's Spectral Subtraction Algorithm by New Voice Activity Detection)

  • 류종훈;김대경;박장식;손경식
    • 한국멀티미디어학회논문지
    • /
    • 제4권1호
    • /
    • pp.46-55
    • /
    • 2001
  • 본 논문에서는 확장 스펙트럼 차감 알고리즘으로 처리된 신호의 추정 신호 대 잡음비를 이용한 새로운 음성 활동 검출법을 제안한다. 확장 스펙트럼 차감 알고리즘의 Wiener필터 출력 신호에서 신호 대 잡음비를 추정하기 위한 Wiener 필터를 하나 더 둠으로써 음성 활동을 검출한다. 제안하는 음성 활동 검출기는 계산량이 많지 않으며 낮은 신호 대 잡음비에서도 잘 동작했다. 제안하는 음성 활동 검출기의 응용으로 Boll의 스펙트럼 차감 알고리즘에 제안하는 음성 활동 검출기를 적용한 다음 확장 스펙트럼 차감 알고리즘과 비교하였다. 제안하는 음성 활동 검출법에 의한 Boll의 스펙트럼 타감 알고리즘은 음성/비음성 구간 모두에서 확장스펙트럼 차감 알고리즘보다 우수한 성능을 보였다.

  • PDF

음성 활동 구간 검출을 위한 스펙트랄 엔트로피의 재구성 효과 (Reconstruction Effect of the Spectral Entropy for the Voice Activity Detection)

  • 권호민;한학용;이광석;고시영;허강인
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.25-28
    • /
    • 2002
  • Voice activity detection is important Problem in the speech recognition and communication. This paper introduces feature parameter which is reconstructed by the spectral entropy of information theory for the robust voice activity detection in the noise environment, analyzes and compares it with the energy method of voice activity detection and performance. In experiment, we confirmed that the spectral entropy is more feature parameter than the energy method for the robust voice activity detection in the various noise environment.

  • PDF

B-Corr Model for Bot Group Activity Detection Based on Network Flows Traffic Analysis

  • Hostiadi, Dandy Pramana;Wibisono, Waskitho;Ahmad, Tohari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.4176-4197
    • /
    • 2020
  • Botnet is a type of dangerous malware. Botnet attack with a collection of bots attacking a similar target and activity pattern is called bot group activities. The detection of bot group activities using intrusion detection models can only detect single bot activities but cannot detect bots' behavioral relation on bot group attack. Detection of bot group activities could help network administrators isolate an activity or access a bot group attacks and determine the relations between bots that can measure the correlation. This paper proposed a new model to measure the similarity between bot activities using the intersections-probability concept to define bot group activities called as B-Corr Model. The B-Corr model consisted of several stages, such as extraction feature from bot activity flows, measurement of intersections between bots, and similarity value production. B-Corr model categorizes similar bots with a similar target to specify bot group activities. To achieve a more comprehensive view, the B-Corr model visualizes the similarity values between bots in the form of a similar bot graph. Furthermore, extensive experiments have been conducted using real botnet datasets with high detection accuracy in various scenarios.

차량 잡음 환경에서 엔트로피 기반의 음성 구간 검출 (Voice Activity Detection Based on Entropy in Noisy Car Environment)

  • 노용완;이규범;이우석;홍광석
    • 융합신호처리학회논문지
    • /
    • 제9권2호
    • /
    • pp.121-128
    • /
    • 2008
  • 정확한 음성 구간 검출은 음성 인식 및 음성 코딩 그리고 음성 통신 시스템 등과 같은 음성 어플리케이션의 성능에 큰 영향을 미친다. 본 논문에서는 실제 운전하고 있는 상태에서 다양한 차량 노이즈 환경의 음성 구간 검출 방법을 제안한다. 기존의 음성 구간 검출은 시간 에너지, 주파수 에너지, 영 교차율, spectral entropy 등 다양한 방법을 사용하였으며 잡음 환경에서 급격하게 성능이 저하되는 단점이 있었다. 본 논문에서는 기존의 spectral entropy를 기반으로 하여 MFB(Mel-frequency Filter Banks) spectral entropy, 기울기 FFT(Fast Fourier Transform) spectral entropy, 기울기 MFB spectral entropy를 이용한 음성 구간 검출 방법을 제안한다. MFB는 멜 스케일과 FFT를 곱한 것으로 멜 스케일은 인간이 소리를 인지할 때 주파수에 대해 비선형적인 스케일이며 음성의 특징을 잘 반영한다. 제안한 MFB spectral entropy 방법은 다양한 차량 잡음 환경에서 음성 및 비음성 분별 능력을 향상시킬 수 있으며 실험 결과 93.21%의 음성 구간 검출율을 나타내었다. 이는 기존의 spectral entropy 방법과 비교할 때 MFB를 이용한 음성 구간 검출 방법이 3.2%의 검출율이 향상되었다.

  • PDF

Face and Hand Activity Detection Based on Haar Wavelet and Background Updating Algorithm

  • Shang, Yiting;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제14권8호
    • /
    • pp.992-999
    • /
    • 2011
  • This paper proposed a human body posture recognition program based on haar-like feature and hand activity detection. Its distinguishing features are the combination of face detection and motion detection. Firstly, the program uses the haar-like feature face detection to receive the location of human face. The haar-like feature is provided with the advantages of speed. It means the less amount of calculation the haar-like feature can exclude a large number of interference, and it can discriminate human face more accurately, and achieve the face position. Then the program uses the frame subtraction to achieve the position of human body motion. This method is provided with good performance of the motion detection. Afterwards, the program recognises the human body motion by calculating the relationship of the face position with the position of human body motion contour. By the test, we know that the recognition rate of this algorithm is more than 92%. The results show that, this algorithm can achieve the result quickly, and guarantee the exactitude of the result.

자동차 잡음 환경에서 웨이브렛 밴드 엔트로피 앙상블 분석을 이용한 음성구간 검출 알고리즘 (Voice Activity Detection Algorithm using Wavelet Band Entropy Ensemble Analysis in Car Noisy Environments)

  • 이기현;이윤정;김명남
    • 한국멀티미디어학회논문지
    • /
    • 제16권9호
    • /
    • pp.1005-1017
    • /
    • 2013
  • 음성구간 검출은 음성과 잡음이 섞인 신호에서 음성구간과 비음성구간을 구분하는 과정으로 음성 향상을 위한 신호처리에서 매우 중요한 과정이다. 지금까지 음성구간 검출에 관한 많은 연구가 있었지만, 낮은 신호 대 잡음비 환경이나 자동차 잡음과 같은 시간에 따른 변화가 심한 잡음환경에서는 좋은 성능을 보이지 못하였다. 본 논문에서는 웨이브렛 밴드 엔트로피 기반의 앙상블 분산과 소프트 문턱치 기법을 이용한 새로운 음성구간 검출 알고리듬을 제안하였다. 제안한 알고리듬의 성능을 비교 평가하기 위하여 자동차 잡음이 있는 다양한 신호 대 잡음비 환경에서 실험을 수행하였으며 실험결과, 제안한 방법의 우수한 성능을 확인할 수 있었다.

잡음 환경에서 심리음향모델 기반 음성 에너지 최대화를 이용한 음성 검출 방법 (Voice Activity Detection Method Using Psycho-Acoustic Model Based on Speech Energy Maximization in Noisy Environments)

  • 최갑근;김순협
    • 한국음향학회지
    • /
    • 제28권5호
    • /
    • pp.447-453
    • /
    • 2009
  • 이 논문은 음성 에너지를 최대화 하여 낮은 SNR환경에서 음성 존재 여부를 판단하고 정확한 끝점을 검출하는 방법에 대한 것이다. 전통적인 VAD (Voice Activity Detection) 알고리듬은 잡음의 추정치를 이용해 음성과 비음성 구간을 선택하여 낮은 SNR환경이나 비안정 잡음환경에서는 정확하지 못한 문턱값으로 인해 부정확한 끝점검출을 하였다. 또한 잡음의 시간적 변화를 반영하기 위해 비교적 큰 분석 구간을 두어 계산량이 증가함에 따라 실제 응용에 적합하지 않은 단점이 있다. 이 논문은 잡음환경에서 정확한 음성 구간의 검출을 위해 심리음향 모델에 기반 한 바크 스케일 필터 뱅크를 이용하여 주어진 프레임에서 음성 에너지를 최대화 시키고 잡음을 억제하는 SEM-VAD (Speech Energy Maximization-Voice Activity Detection) 방법을 제안하였다. 다양한 잡음환경, SNR 15 dB, 10 dB 5 dB 0 dB 상황에서 실험한 결과 SNR의 변화에 안정적인 문턱값을 얻었고, 음성 검출을 위한 실험에서 자동차 잡음 환경에 대한 PHR (Pause Hit Rate)은 모든 잡음 환경에서 100%의 정확도를 보였고, FAR (False Alarm Rate)는 SNR 15 dB와 10 dB에서는 0%, SNR 5 dB에서 5.6% SNR 0 dB에서 9.5%의 성능을 보였다.

Peri-estrus activity and mounting behavior and its application to estrus detection in Hanwoo (Korea Native Cattle)

  • Si Nae Cheon;Geun-Woo Park;Kyu-Hyun Park;Jung Hwan Jeon
    • Journal of Animal Science and Technology
    • /
    • 제65권4호
    • /
    • pp.748-758
    • /
    • 2023
  • This study was conducted to investigate the change in activity and mounting behavior in Hanwoo (Korean Native Cattle) during the peri-estrus period and its application to estrus detection. A total of 20 Hanwoo cows were fitted with a neck-collar accelerometer device, which measured the location and acceleration of cow movements and recorded the number of instances of mounting behavior by the altitude data. The data were analyzed in three periods (24-, 6-, and 2-h periods). Blood samples were collected for 5 days after the prostaglandin F2α (PGF2α) injection, and the concentrations of estradiol, progesterone, follicle-stimulating hormone, and luteinizing hormone were determined by enzyme-linked immunosorbent assays. Activity and mounting behavior recorded over 2-h periods significantly increased as estrus approached and were more efficient at detecting estrus than over 24- and 6-h periods (p < 0.05). Endocrine patterns did not differ with the variation of individual cows during the peri-estrus period (p > 0.05). Activity was selected as the best predictor through stepwise discriminant analysis. However, activity alone is not enough to detect estrus. We suggest that a combination of activity and mounting behavior may improve estrus detection efficiency in Hanwoo. Further research is necessary to validate the findings on a larger sample size.

3축-가속도 센서를 이용한 배례(拜禮)동작 모니터링 및 자동검출 시스템 설계 (Design of Bowing-Activity Monitoring and Automatic Detection System Using 3-Axis Accelerometer)

  • 이영재;이필재;차지영;선우섭;황진상;이정환
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this paper, a new reliable portable activity monitoring device implemented with the buddhist-style bowing activity and walking step detection algorithm, is presented. In order to monitor the bowing and walking activities, miniaturized 3-axis accelerometer sensor with the sensitivity of 800 mV/g was used. After initial signal conditioning, vector magnitude of accelerometer signals was calculated. Syntactic peak detection method was used in order to feature points. All signal processing algorithms were implemented in ultra-low power microcontroller MSP430 with double precision floating point arithmetic. For evaluation, 19 young man($24.22\pm5.22$ yrs) and woman($22.28\pm2.72$ yrs) were involved. The accuracy of the proposed algorithms were 98.91 %($\pm0.011$) for walking step detection and 98.25 %($\pm0.023$) for buddhist-style bowing activity. Comparing to the commercialized pedometer accuracy, 87.1 %($\pm0.058$), the proposed walking step detection algorithms show more reliable accuracy.