Journal of information and communication convergence engineering
/
제1권4호
/
pp.205-208
/
2003
Voice activity detection is a important problem in the speech recognition and speech communication. This paper introduces new feature parameter which are reconstructed by spectral entropy of information theory for robust voice activity detection in the noise environment, then analyzes and compares it with energy method of voice activity detection and performance. In experiments, we confirmed that spectral entropy and its reconstructed parameter are superior than the energy method for robust voice activity detection in the various noise environment.
본 논문에서는 확장 스펙트럼 차감 알고리즘으로 처리된 신호의 추정 신호 대 잡음비를 이용한 새로운 음성 활동 검출법을 제안한다. 확장 스펙트럼 차감 알고리즘의 Wiener필터 출력 신호에서 신호 대 잡음비를 추정하기 위한 Wiener 필터를 하나 더 둠으로써 음성 활동을 검출한다. 제안하는 음성 활동 검출기는 계산량이 많지 않으며 낮은 신호 대 잡음비에서도 잘 동작했다. 제안하는 음성 활동 검출기의 응용으로 Boll의 스펙트럼 차감 알고리즘에 제안하는 음성 활동 검출기를 적용한 다음 확장 스펙트럼 차감 알고리즘과 비교하였다. 제안하는 음성 활동 검출법에 의한 Boll의 스펙트럼 타감 알고리즘은 음성/비음성 구간 모두에서 확장스펙트럼 차감 알고리즘보다 우수한 성능을 보였다.
Voice activity detection is important Problem in the speech recognition and communication. This paper introduces feature parameter which is reconstructed by the spectral entropy of information theory for the robust voice activity detection in the noise environment, analyzes and compares it with the energy method of voice activity detection and performance. In experiment, we confirmed that the spectral entropy is more feature parameter than the energy method for the robust voice activity detection in the various noise environment.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권10호
/
pp.4176-4197
/
2020
Botnet is a type of dangerous malware. Botnet attack with a collection of bots attacking a similar target and activity pattern is called bot group activities. The detection of bot group activities using intrusion detection models can only detect single bot activities but cannot detect bots' behavioral relation on bot group attack. Detection of bot group activities could help network administrators isolate an activity or access a bot group attacks and determine the relations between bots that can measure the correlation. This paper proposed a new model to measure the similarity between bot activities using the intersections-probability concept to define bot group activities called as B-Corr Model. The B-Corr model consisted of several stages, such as extraction feature from bot activity flows, measurement of intersections between bots, and similarity value production. B-Corr model categorizes similar bots with a similar target to specify bot group activities. To achieve a more comprehensive view, the B-Corr model visualizes the similarity values between bots in the form of a similar bot graph. Furthermore, extensive experiments have been conducted using real botnet datasets with high detection accuracy in various scenarios.
정확한 음성 구간 검출은 음성 인식 및 음성 코딩 그리고 음성 통신 시스템 등과 같은 음성 어플리케이션의 성능에 큰 영향을 미친다. 본 논문에서는 실제 운전하고 있는 상태에서 다양한 차량 노이즈 환경의 음성 구간 검출 방법을 제안한다. 기존의 음성 구간 검출은 시간 에너지, 주파수 에너지, 영 교차율, spectral entropy 등 다양한 방법을 사용하였으며 잡음 환경에서 급격하게 성능이 저하되는 단점이 있었다. 본 논문에서는 기존의 spectral entropy를 기반으로 하여 MFB(Mel-frequency Filter Banks) spectral entropy, 기울기 FFT(Fast Fourier Transform) spectral entropy, 기울기 MFB spectral entropy를 이용한 음성 구간 검출 방법을 제안한다. MFB는 멜 스케일과 FFT를 곱한 것으로 멜 스케일은 인간이 소리를 인지할 때 주파수에 대해 비선형적인 스케일이며 음성의 특징을 잘 반영한다. 제안한 MFB spectral entropy 방법은 다양한 차량 잡음 환경에서 음성 및 비음성 분별 능력을 향상시킬 수 있으며 실험 결과 93.21%의 음성 구간 검출율을 나타내었다. 이는 기존의 spectral entropy 방법과 비교할 때 MFB를 이용한 음성 구간 검출 방법이 3.2%의 검출율이 향상되었다.
This paper proposed a human body posture recognition program based on haar-like feature and hand activity detection. Its distinguishing features are the combination of face detection and motion detection. Firstly, the program uses the haar-like feature face detection to receive the location of human face. The haar-like feature is provided with the advantages of speed. It means the less amount of calculation the haar-like feature can exclude a large number of interference, and it can discriminate human face more accurately, and achieve the face position. Then the program uses the frame subtraction to achieve the position of human body motion. This method is provided with good performance of the motion detection. Afterwards, the program recognises the human body motion by calculating the relationship of the face position with the position of human body motion contour. By the test, we know that the recognition rate of this algorithm is more than 92%. The results show that, this algorithm can achieve the result quickly, and guarantee the exactitude of the result.
음성구간 검출은 음성과 잡음이 섞인 신호에서 음성구간과 비음성구간을 구분하는 과정으로 음성 향상을 위한 신호처리에서 매우 중요한 과정이다. 지금까지 음성구간 검출에 관한 많은 연구가 있었지만, 낮은 신호 대 잡음비 환경이나 자동차 잡음과 같은 시간에 따른 변화가 심한 잡음환경에서는 좋은 성능을 보이지 못하였다. 본 논문에서는 웨이브렛 밴드 엔트로피 기반의 앙상블 분산과 소프트 문턱치 기법을 이용한 새로운 음성구간 검출 알고리듬을 제안하였다. 제안한 알고리듬의 성능을 비교 평가하기 위하여 자동차 잡음이 있는 다양한 신호 대 잡음비 환경에서 실험을 수행하였으며 실험결과, 제안한 방법의 우수한 성능을 확인할 수 있었다.
이 논문은 음성 에너지를 최대화 하여 낮은 SNR환경에서 음성 존재 여부를 판단하고 정확한 끝점을 검출하는 방법에 대한 것이다. 전통적인 VAD (Voice Activity Detection) 알고리듬은 잡음의 추정치를 이용해 음성과 비음성 구간을 선택하여 낮은 SNR환경이나 비안정 잡음환경에서는 정확하지 못한 문턱값으로 인해 부정확한 끝점검출을 하였다. 또한 잡음의 시간적 변화를 반영하기 위해 비교적 큰 분석 구간을 두어 계산량이 증가함에 따라 실제 응용에 적합하지 않은 단점이 있다. 이 논문은 잡음환경에서 정확한 음성 구간의 검출을 위해 심리음향 모델에 기반 한 바크 스케일 필터 뱅크를 이용하여 주어진 프레임에서 음성 에너지를 최대화 시키고 잡음을 억제하는 SEM-VAD (Speech Energy Maximization-Voice Activity Detection) 방법을 제안하였다. 다양한 잡음환경, SNR 15 dB, 10 dB 5 dB 0 dB 상황에서 실험한 결과 SNR의 변화에 안정적인 문턱값을 얻었고, 음성 검출을 위한 실험에서 자동차 잡음 환경에 대한 PHR (Pause Hit Rate)은 모든 잡음 환경에서 100%의 정확도를 보였고, FAR (False Alarm Rate)는 SNR 15 dB와 10 dB에서는 0%, SNR 5 dB에서 5.6% SNR 0 dB에서 9.5%의 성능을 보였다.
Si Nae Cheon;Geun-Woo Park;Kyu-Hyun Park;Jung Hwan Jeon
Journal of Animal Science and Technology
/
제65권4호
/
pp.748-758
/
2023
This study was conducted to investigate the change in activity and mounting behavior in Hanwoo (Korean Native Cattle) during the peri-estrus period and its application to estrus detection. A total of 20 Hanwoo cows were fitted with a neck-collar accelerometer device, which measured the location and acceleration of cow movements and recorded the number of instances of mounting behavior by the altitude data. The data were analyzed in three periods (24-, 6-, and 2-h periods). Blood samples were collected for 5 days after the prostaglandin F2α (PGF2α) injection, and the concentrations of estradiol, progesterone, follicle-stimulating hormone, and luteinizing hormone were determined by enzyme-linked immunosorbent assays. Activity and mounting behavior recorded over 2-h periods significantly increased as estrus approached and were more efficient at detecting estrus than over 24- and 6-h periods (p < 0.05). Endocrine patterns did not differ with the variation of individual cows during the peri-estrus period (p > 0.05). Activity was selected as the best predictor through stepwise discriminant analysis. However, activity alone is not enough to detect estrus. We suggest that a combination of activity and mounting behavior may improve estrus detection efficiency in Hanwoo. Further research is necessary to validate the findings on a larger sample size.
In this paper, a new reliable portable activity monitoring device implemented with the buddhist-style bowing activity and walking step detection algorithm, is presented. In order to monitor the bowing and walking activities, miniaturized 3-axis accelerometer sensor with the sensitivity of 800 mV/g was used. After initial signal conditioning, vector magnitude of accelerometer signals was calculated. Syntactic peak detection method was used in order to feature points. All signal processing algorithms were implemented in ultra-low power microcontroller MSP430 with double precision floating point arithmetic. For evaluation, 19 young man($24.22\pm5.22$ yrs) and woman($22.28\pm2.72$ yrs) were involved. The accuracy of the proposed algorithms were 98.91 %($\pm0.011$) for walking step detection and 98.25 %($\pm0.023$) for buddhist-style bowing activity. Comparing to the commercialized pedometer accuracy, 87.1 %($\pm0.058$), the proposed walking step detection algorithms show more reliable accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.