• Title/Summary/Keyword: Active zinc

Search Result 167, Processing Time 0.026 seconds

Fabrication and Characterization of Zinc-Tin-Oxide Thin Film Transistors Prepared through RF-Sputtering

  • Do, Woori;Choi, Jeong-Wan;Ko, Myeong-Hee;Kim, Eui-Hyeon;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.207.2-207.2
    • /
    • 2013
  • Oxide-based thin film transistors have been attempted as powerful candidates for driving circuits for active-matrix organic light-emitting diodes and transparent electronics. The oxide TFTs are based on the amorphous multi-component oxides involving zinc, indium, and/or tin elements as main cation sources. The current work employed RF sputtering in order to deposit zinc-tin oxide thin films applicable to transparent oxide thin film transistors. The deposited thin film was characterized and probed in terms of materials and devices. The physical/chemical characterizations were performed using X-ray diffraction, Atomic Force Microscopy, Spectroscopic Ellipsometry, and X-ray Photoelectron Spectroscopy. The thin film transistors were fabricated using a bottom-gated structure where thermally-grown silicon oxide layers were applied as gate-dielectric materials. The inherent properties of oxide thin films are combined with the corresponding device performances with the aim to fabricating the multi-component oxide thin films being optimized towards transparent electronics.

  • PDF

Crystal Structure of the Metallo-Endoribonuclease YbeY from Staphylococcus aureus

  • Jinwook Lee;Inseong Jo;Ae-Ran Kwon;Nam-Chul Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • Endoribonuclease YbeY is specific to the single-stranded RNA of ribosomal RNAs and small RNAs. This enzyme is essential for the maturation and quality control of ribosomal RNA in a wide range of bacteria and for virulence in some pathogenic bacteria. In this study, we determined the crystal structure of YbeY from Staphylococcus aureus at a resolution of 1.9 Å in the presence of zinc chloride. The structure showed a zinc ion at the active site and two molecules of tricarboxylic acid citrate, which were also derived from the crystallization conditions. Our structure showed the zinc ionbound local environment at the molecular level for the first time. Molecular comparisons were performed between the carboxylic moieties of citrate and the phosphate moiety of the RNA backbone, and a model of YbeY in complex with a single strand of RNA was subsequently constructed. Our findings provide molecular insights into how the YbeY enzyme recognizes singlestranded RNA in bacteria.

Effect of Color Development of Willemite Crystalline Glaze by Adding NiO (Willemite 결정유에 NiO 첨가가 발색에 미치는 영향)

  • Lee, Chi-Youn;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.598-602
    • /
    • 2010
  • When metal oxides are added into crystalline glaze, colors of glaze and crystals are similar as colorants generally. But the case of NiO in zinc crystalline glaze is different from general color development. When NiO is added to zinc crystalline glaze it can develop two or three colors. The active use of color development mechanism by adding NiO to the zinc crystalline glaze to control color of the base glaze and crystal with stability is investigated. This report is expected to contribute to the ceramic industry in improving application of zinc crystalline glaze. For the experiment of NiO, the quantity of NiO additives is changed to the base glaze for the most adequate formation of willemite crystal from previous research and firing condition: temperature increasing speed $5^{\circ}C/min$, holding 1 h at $1270^{\circ}C$, annealing speed $3^{\circ}C/min$ till $1170^{\circ}C$, holding 2 h at $1170^{\circ}C$ then naturally annealed. The samples are characterized by X-ray diffraction (XRD), UV-vis, and Micro-Raman. The result of the procedure as follows; Ni substitutes for Zn ion then glaze develops blue willemite crystals, as if cobalt is used, on brown glaze base. When NiO quantity is increased to over 5 wt%, willemite size is decreased, and the density of the crystal is increased, at the same time $Ni_2SiO_4$ (olivine) phase, the second phase, has been developed. The excessive NiO is reacted with silicate in the glass then developed green $Ni_2SiO_4$ (olivine), and quantity of $Ni_2SiO_4$ (olivine) is increased as quantity of willemite is decreased. It is proved to create three colors, blue, brown and green by controlling the quantity of NiO to the zinc crystalline glaze and it will improve the multiple use of colors to the ceramic design.

Aspects of Nanotechnology In Inorganic Sunscreen Dispersions: Efficacy and Aesthetics

  • Arthur Georgalas
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.97-97
    • /
    • 2003
  • Chemists must take into consideration more factors to formulate with inorganic sunscreens than many other active ingredients including organic sunscreens. Because the UV radiation attenuation grade particles of Titanium Dioxide and Zinc Oxide are in the nanometer range, the state of their dispersion in the product film on the skin governs their efficacy and aesthetics.(omitted)

  • PDF

Highly stable amorphous indium.gallium.zinc-oxide thin-film transistor using an etch-stopper and a via-hole structure

  • Mativenga, M.;Choi, J.W.;Hur, J.H.;Kim, H.J.;Jang, Jin
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.47-50
    • /
    • 2011
  • Highly stable amorphous indium.gallium.zinc-oxide (a-IGZO) thin-film transistors (TFTs) were fabricated with an etchstopper and via-hole structure. The TFTs exhibited 40 $cm^2$/V s field-effect mobility and a 0.21 V/dec gate voltage swing. Gate-bias stress induced a negligible threshold voltage shift (${\Delta}V_{th}$) at room temperature. The excellent stability is attribute to the via-hole and etch-stopper structure, in which, the source/drain metal contacts the active a-IGZO layer through two via holes (one on each side), resulting in minimized damage to the a-IGZO layer during the plasma etching of the source/drain metal. The comparison of the effects of the DC and AC stress on the performance of the TFTs at $60^{\circ}C$ showed that there was a smaller ${\Delta}V_{th}$ in the AC stress compared with the DC stress for the same effective stress time, indicating that the trappin of the carriers at the active layer-gate insulator interface was the dominant degradation mechanism.

Effects of Electrolyte Concentration on Electrochemical Properties of an Iron Hexacyanoferrate Active Material (헥사시아노 철산철 활물질의 전기화학적 특성에 미치는 전해질 농도의 영향)

  • Yang, Eun-Ji;Lee, Sangyup;Nogales, Paul Maldonado;Jeong, Soon-Ki
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.117-123
    • /
    • 2021
  • The effects of electrolyte concentration on the electrochemical properties of Fe4[Fe(CN6)]3(FeHCF) as a novel active material for the electrode of aqueous zinc-ion batteries was investigated. The electrochemical reactions and structural stability of the FeHCF electrode were significantly affected by the electrolyte concentration. In the electrolyte solutions of 1.0-7.0 mol dm-3, the charge-discharge capacities increased with increasing electrolyte concentration, however gradually decreased as the cycle progressed. On the other hand, in the 9.0 mol dm-3 electrolyte solution, the initial capacity was relatively small, however showed good cyclability. Additionally, the FeHCF electrode after five cycles in the former electrolyte solutions, had a change in crystal structure, whereas there was no change in the latter electrolyte solution. This suggests that the performance of the FeHCF electrode is greatly influenced by the hydration structure of zinc ions present in electrolyte solutions.

THE RELATION BETWEEN QUALITY AND CONTENT OF ZINC AND MAGNESIUM IN DRIED LAVER, PORPHYRA TENERA KJELLMAN (건해태(김)의 아연 및 마그네숨 함양과 품질과의 관계)

  • LEE Jong-Ho;HAN Sung-Bin;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.7 no.2
    • /
    • pp.63-68
    • /
    • 1974
  • The growth of sea weeds is greatly affected by the environmental conditions of ambient water. Especially nutrient salts in sea water function as a major factor to the growth of lavers, so that the content of inorganic substances in lavers could he a criterion for quality evaluation of lavers. In this experiment, the relation between the quality and the content of Zinc and Magnesium which are not only physiologically active and closely related with pigments such as chlorophll and phycobilins but also important in quantify is discussed if such a measurement to be an index for quality evaluation. Sixteen samples of layers were collected from three different culture farms, 7 from Jangrim-Busan, 6 from Wando-Jeon Nam, 3 from Hadong-Gyeong Nam, and classified into 3 quality grades to each farm and to whole samples by organoleptic test. Zinc and Magnesium were analyzed by atomic absorption spectrophotometry. For pigment analysis, chlorphyll was extracted with 85 percent acetone, filtered and the absorbance was measured at 660 nm and the residue was further extracted with phosphoric buffer solution to determine the optical density for phycobilins at 560 nm. The result showed that the total content of Zinc and Magnesium varied between the farms, but kept consistent with quality grades from the same farm. The Zinc content was correlated proportion- ally with the content of phycobilins, and Magnesium content in total ash could roughly represent the content of chlorophll except some examples in which the Magnesium content of chlorophyll-ext ractresiduewasexceptionallyhigher. In conclusion the contents of these metals provide an applicable index for quality judgment of lavers.

  • PDF

Amorphous Indium-Tin-Zinc-Oxide (ITZO) Thin Film Transistors

  • Jo, Gwang-Min;Lee, Gi-Chang;Seong, Sang-Yun;Kim, Se-Yun;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.170-170
    • /
    • 2010
  • Thin-film transistors (TFT) have become the key components of electronic and optoelectronic devices. Most conventional thin-film field-effect transistors in display applications use an amorphous or polycrystal Si:H layer as the channel. This silicon layers are opaque in the visible range and severely restrict the amount of light detected by the observer due to its bandgap energy smaller than the visible light. Therefore, Si:H TFT devices reduce the efficiency of light transmittance and brightness. One method to increase the efficiency is to use the transparent oxides for the channel, electrode, and gate insulator. The development of transparent oxides for the components of thin-film field-effect transistors and the room-temperature fabrication with low voltage operations of the devices can offer the flexibility in designing the devices and contribute to the progress of next generation display technologies based on transparent displays and flexible displays. In this thesis, I report on the dc performance of transparent thin-film transistors using amorphous indium tin zinc oxides for an active layer. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium tin zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium tin zinc oxides was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 4.17V and an on/off ration of ${\sim}10^9$ operated as an n-type enhancement mode with saturation mobility with $15.8\;cm^2/Vs$. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium tin zinc oxides for an active layer were reported. The devices were fabricated at room temperature by RF magnetron sputtering. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF

Influence of Oxygen Partial Pressure on ZnO Thin Films for Thin Film Transistors

  • Kim, Jae-Won;Kim, Ji-Hong;Roh, Ji-Hyoung;Lee, Kyung-Joo;Moon, Sung-Joon;Do, Kang-Min;Park, Jae-Ho;Jo, Seul-Ki;Shin, Ju-Hong;Yer, In-Hyung;Koo, Sang-Mo;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.106-106
    • /
    • 2011
  • Recently, zinc oxide (ZnO) thin films have attracted great attention as a promising candidate for various electronic applications such as transparent electrodes, thin film transistors, and optoelectronic devices. ZnO thin films have a wide band gap energy of 3.37 eV and transparency in visible region. Moreover, ZnO thin films can be deposited in a poly-crystalline form even at room temperature, extending the choice of substrates including even plastics. Therefore, it is possible to realize thin film transistors by using ZnO thin films as the active channel layer. In this work, we investigated influence of oxygen partial pressure on ZnO thin films and fabricated ZnO-based thin film transistors. ZnO thin films were deposited on glass substrates by using a pulsed laser deposition technique in various oxygen partial pressures from 20 to 100 mTorr at room temperature. X-ray diffraction (XRD), transmission line method (TLM), and UV-Vis spectroscopy were employed to study the structural, electrical, and optical properties of the ZnO thin films. As a result, 80 mTorr was optimal condition for active layer of thin film transistors, since the active layer of thin film transistors needs high resistivity to achieve low off-current and high on-off ratio. The fabricated ZnO-based thin film transistors operated in the enhancement mode with high field effect mobility and low threshold voltage.

  • PDF