DOI QR코드

DOI QR Code

Effects of Electrolyte Concentration on Electrochemical Properties of an Iron Hexacyanoferrate Active Material

헥사시아노 철산철 활물질의 전기화학적 특성에 미치는 전해질 농도의 영향

  • Yang, Eun-Ji (Dept. of Energy Systems Engineering, Soonchunhyang University) ;
  • Lee, Sangyup (Dept. of Energy Systems Engineering, Soonchunhyang University) ;
  • Nogales, Paul Maldonado (Dept. of Energy Systems Engineering, Soonchunhyang University) ;
  • Jeong, Soon-Ki (Dept. of Energy Systems Engineering, Soonchunhyang University)
  • Received : 2021.01.01
  • Accepted : 2021.02.20
  • Published : 2021.02.28

Abstract

The effects of electrolyte concentration on the electrochemical properties of Fe4[Fe(CN6)]3(FeHCF) as a novel active material for the electrode of aqueous zinc-ion batteries was investigated. The electrochemical reactions and structural stability of the FeHCF electrode were significantly affected by the electrolyte concentration. In the electrolyte solutions of 1.0-7.0 mol dm-3, the charge-discharge capacities increased with increasing electrolyte concentration, however gradually decreased as the cycle progressed. On the other hand, in the 9.0 mol dm-3 electrolyte solution, the initial capacity was relatively small, however showed good cyclability. Additionally, the FeHCF electrode after five cycles in the former electrolyte solutions, had a change in crystal structure, whereas there was no change in the latter electrolyte solution. This suggests that the performance of the FeHCF electrode is greatly influenced by the hydration structure of zinc ions present in electrolyte solutions.

수계 아연 이온 전지의 신규 전극 활물질로서 헥사시아노 철산철(Fe4[Fe(CN6)]3, FeHCF)의 전기화학적 특성에 미치는 전해질 농도의 영향에 관하여 조사하였다. FeHCF 전극의 전기화학 반응 및 구조적 안정성에 전해질 농도가 크게 영향을 준다는 것이 전위 주사, 충전-방전 시험, X-선 회절 분석에 의해 확인되었다. 1.0-7.0 mol dm-3의 전해질 용액에서는 농도가 증가함에 따라 FeHCF 전극의 충전 및 방전 용량이 증가하였으나 사이클이 진행됨에 따라 서서히 감소하였다. 반면에 9.0 mol dm-3의 전해질 용액에서는 초기 용량은 상대적으로 작았으나 사이클 특성이 우수하였다. 전자의 전해질 용액에서 5사이클 진행된 FeHCF 전극은 반응 전과 비교하여 결정 구조에 변화가 있었으며, 후자의 경우에는 변화가 없었다. 이것은 FeHCF 전극의 전기화학적 성능이 전해질 용액 중에 존재하는 아연 이온의 수화 구조와 크게 관련이 있음을 시사하는 것이다.

Keywords

References

  1. Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li, Z. Huang & C. Zhi. (2020). Voltage Issue of Aqueous Rechargeable Metal-Ion Batteries. Chemical Society Reviews, 49(1), 180-232. DOI : 10.1039/C9CS00131J
  2. Q. Liu, Z. Pan, E. Wang, L. An & G. Sun. (2020). Aqueous Metal-Air Batteries: Fundamentals and Applications. Energy Storage Materials, 27, 478-505. DOI : 10.1016/j.ensm.2019.12.011
  3. J. Liu, C. Xu, Z. Chen, S. Ni & Z. X. Shen. (2018). Progress in Aqueous Rechargeable Batteries. Green Energy & Environment, 1(3), 20-41. DOI : https://doi.org/10.1016/j.gee.2017.10.001
  4. J. O. G. Posada et al. (2017). Aqueous Batteries as Grid Scale Energy Storage Solutions. Renewable and Sustainable Energy Reviews, 68(2), 1174-1182. https://doi.org/10.1016/j.rser.2016.02.024
  5. J. O. G. Posada & P. J. Hall. (2014). Multivariate Investigation of Parameters in the Developmentand Improvement of NiFe Cells. Journal of Power Sources, 262, 263-269. DOI : 10.1016/j.jpowsour.2014.03.145
  6. X. Jia, C. Liu, Z. G. Neale, J. Yang & G. Cao. (2020). Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 120(15), 7795-7866. DOI : 10.1021/acs.chemrev.9b00628
  7. G. Fang, J. Zhou, A. Pan & S. Liang. (2018). Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Letters, 3(10), 2480-2501. DOI : 10.1021/acsenergylett.8b01426
  8. F. Grandjean, L. Samainb & G. J. Long. (2016). Characterization and Utilization of Prussian Blue and Its Pigments. Dalton Transactions, 45, 18018-18044. DOI : 10.1039/C6DT03351B
  9. P. Nie et al. (2014). Prussian Blue Analogues: A New Class of Anode Materials for Lithium Ion Batteries. Journal of Materials Chemistry A, 2(16), 5852-5857. DOI : 10.1039/c4ta00062e
  10. S. Wheeler, I. Capone, S. Day, C. Tang & M. Pasta. (2019). Low-Potential Prussian Blue Analogues for Sodium-Ion Batteries: Manganese Hexacyanochromate. Chemistry of Materials, 31(7), 2619-2626. DOI : 10.1021/acs.chemmater.9b00471
  11. C. Lee & S. Jeong. (2018). Modulating the Hydration Number of Calcium Ions by Varying the Electrolyte Concentration: Electrochemical Performance in a Prussian Blue Electrode/Aqueous Electrolyte System for Calcium-ion Batteries. Electrochimica Acta, 265(7), 430-436. DOI : 10.1016/j.electacta.2018.01.172
  12. C. Lee & S. Jeong. (2016). A Novel Superconcentrated Aqueous Electrolyte to Improve the Electrochemical Performance of Calcium-ion Batteries. Chemistry Letters, 45(12), 2619-2626. DOI : 10.1021/acs.chemmater.9b00471
  13. K. Hurlbutt, S. Wheeler, I. Capone & M. Pasta. (2018). Prussian Blue Analogs as Battery Materials. Joule, 2(10), 1950-1960. DOI : 10.1016/j.joule.2018.07.017
  14. H. J. Buser, D. Schwarzenbach, W. Petter & A. Ludi. (2018). The Crystal Structure of Prussian Blue: Fe4[Fe(CN)6]3..xH2O. Inorganic Chemistry, 16(11), 2704-2710. DOI : 10.1021/ic50177a008
  15. C. Lee & S. Jeong. (2015). Raman Spectroscopy for Understanding of Lithium Intercalation into Graphite in Propylene Carbonated-Based Solutions. Journal of Spectroscopy, 323649. DOI : 10.1155/2015/323649