References
- Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li, Z. Huang & C. Zhi. (2020). Voltage Issue of Aqueous Rechargeable Metal-Ion Batteries. Chemical Society Reviews, 49(1), 180-232. DOI : 10.1039/C9CS00131J
- Q. Liu, Z. Pan, E. Wang, L. An & G. Sun. (2020). Aqueous Metal-Air Batteries: Fundamentals and Applications. Energy Storage Materials, 27, 478-505. DOI : 10.1016/j.ensm.2019.12.011
- J. Liu, C. Xu, Z. Chen, S. Ni & Z. X. Shen. (2018). Progress in Aqueous Rechargeable Batteries. Green Energy & Environment, 1(3), 20-41. DOI : https://doi.org/10.1016/j.gee.2017.10.001
- J. O. G. Posada et al. (2017). Aqueous Batteries as Grid Scale Energy Storage Solutions. Renewable and Sustainable Energy Reviews, 68(2), 1174-1182. https://doi.org/10.1016/j.rser.2016.02.024
- J. O. G. Posada & P. J. Hall. (2014). Multivariate Investigation of Parameters in the Developmentand Improvement of NiFe Cells. Journal of Power Sources, 262, 263-269. DOI : 10.1016/j.jpowsour.2014.03.145
- X. Jia, C. Liu, Z. G. Neale, J. Yang & G. Cao. (2020). Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 120(15), 7795-7866. DOI : 10.1021/acs.chemrev.9b00628
- G. Fang, J. Zhou, A. Pan & S. Liang. (2018). Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Letters, 3(10), 2480-2501. DOI : 10.1021/acsenergylett.8b01426
- F. Grandjean, L. Samainb & G. J. Long. (2016). Characterization and Utilization of Prussian Blue and Its Pigments. Dalton Transactions, 45, 18018-18044. DOI : 10.1039/C6DT03351B
- P. Nie et al. (2014). Prussian Blue Analogues: A New Class of Anode Materials for Lithium Ion Batteries. Journal of Materials Chemistry A, 2(16), 5852-5857. DOI : 10.1039/c4ta00062e
- S. Wheeler, I. Capone, S. Day, C. Tang & M. Pasta. (2019). Low-Potential Prussian Blue Analogues for Sodium-Ion Batteries: Manganese Hexacyanochromate. Chemistry of Materials, 31(7), 2619-2626. DOI : 10.1021/acs.chemmater.9b00471
- C. Lee & S. Jeong. (2018). Modulating the Hydration Number of Calcium Ions by Varying the Electrolyte Concentration: Electrochemical Performance in a Prussian Blue Electrode/Aqueous Electrolyte System for Calcium-ion Batteries. Electrochimica Acta, 265(7), 430-436. DOI : 10.1016/j.electacta.2018.01.172
- C. Lee & S. Jeong. (2016). A Novel Superconcentrated Aqueous Electrolyte to Improve the Electrochemical Performance of Calcium-ion Batteries. Chemistry Letters, 45(12), 2619-2626. DOI : 10.1021/acs.chemmater.9b00471
- K. Hurlbutt, S. Wheeler, I. Capone & M. Pasta. (2018). Prussian Blue Analogs as Battery Materials. Joule, 2(10), 1950-1960. DOI : 10.1016/j.joule.2018.07.017
- H. J. Buser, D. Schwarzenbach, W. Petter & A. Ludi. (2018). The Crystal Structure of Prussian Blue: Fe4[Fe(CN)6]3..xH2O. Inorganic Chemistry, 16(11), 2704-2710. DOI : 10.1021/ic50177a008
- C. Lee & S. Jeong. (2015). Raman Spectroscopy for Understanding of Lithium Intercalation into Graphite in Propylene Carbonated-Based Solutions. Journal of Spectroscopy, 323649. DOI : 10.1155/2015/323649