• 제목/요약/키워드: Active torque

검색결과 171건 처리시간 0.027초

ACTIVE DIRECT TILT CONTROL FOR STABILITY ENHANCEMENT OF A NARROW COMMUTER VEHICLE

  • Piyabongkarn, D.;Keviczky, T.;Rajamant, R.
    • International Journal of Automotive Technology
    • /
    • 제5권2호
    • /
    • pp.77-88
    • /
    • 2004
  • Narrow commuter vehicles can address many congestion, parking and pollution issues associated with urban transportation. In making narrow vehicles safe, comfortable and acceptable to the public, active tilt control systems are likely to playa crucial role. This paper focuses on the development of an active direct tilt control system for a narrow vehicle that utilizes an actuator in the vehicle suspension. A simple PD controller can stabilize the tilt dynamics of the vehicle to any desired tilt angle. However, the challenges in the tilt control system design arise in determining the desired lean angle in real-time and in minimizing tilt actuator torque requirements. Minimizing torque requirements requires the tilting and turning of the vehicle to be synchronized as closely as possible. This paper explores two different control design approaches to meet these challenges. A Receding Horizon Controller (RHC) is first developed so as to systematically incorporate preview on road curvature and synchronize tilting with driver initiated turning. Second, a nonlinear control system that utilizes feedback linearization is developed and found to be effective in reducing torque. A close analysis of the complex feedback linearization controller provides insight into which terms are important for reducing actuator effort. This is used to reduce controller complexity and obtain a simple nonlinear controller that provides good performance.

INTEGRATED CONTROL SYSTEM DESIGN OF ACTIVE FRONT WHEEL STEERING AND FOUR WHEEL TORQUE TO IMPROVE VEHICLE HANDLING AND STABILITY

  • Wu, J.Y.;Tang, H.J.;Li, S.Y.;Zheng, S.B.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.299-308
    • /
    • 2007
  • This study proposes a two-layer hierarchical control system that integrates active front wheel steering and four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance, stability and robustness of the integrated control vehicle.

인체 전경골근의 수의적 수축시 선행 동심성 근수축이 항정상태 등척성 근력에 미치는 영향 (Force Depression Following Active Muscle Shortening during Voluntary Contraction in Human Tibialis Anterior Muscle)

  • 이해동;이성철
    • 한국운동역학회지
    • /
    • 제16권3호
    • /
    • pp.75-83
    • /
    • 2006
  • The purpose of this study was to investigate steady-state force depression following active muscle shortening in human tibialis anterior muscle during voluntary contractions. Subjects (n = 7; age $24{\sim}39$ years; 7 males) performed isometric reference contractions and isometric-shortening-isometric contractions, using maximal voluntary effort. Force depression was assessed by comparing the steady-state isometric torque produced following active muscle shortening with the purely isometric reference torque obtained at the corresponding joint angle. In order to test for effects of the shortening conditions on the steady-state force depression, the speed of shortening were changed systematically in a random order but balanced design. Ankle dorsiflexion torque and joint angle were continuously measured using a dynamometer. During voluntary contractions, muscle activation of the tibialis anterior and the medical gastrocnemius was recorded using surface electromyography. Force depression during voluntary contractions, with a constant level of muscle activation, was 12 %, on average over all subjects. Force depression was independent of the speeds of shortening ($13.8{\pm}2.9%$, $10.3{\pm}2.6%$ for 15 and 45 deg/sec over 15 deg of shortening, respectively). The results of this study suggest that steady-state force depression is a basic property of voluntarily-contracting human skeletal muscle and has functional implication to human movements.

계통 불평형시 과도 응답 특성이 개선된 고압 이중여자 유도형 풍력발전 시스템의 제어 전략 (Control Strategy of Improved Transient Response for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Grid Unbalance)

  • 한대수;서용석
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.91-103
    • /
    • 2015
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage wind power system under unbalanced grid conditions. Negative sequence control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors: fault ride-through capability, instantaneous active power pulsation, harmonic distortions, and torque pulsation. The control algorithm having zero amplitude of torque ripple indicates the most cost-effective performance in terms of torque pulsation. The least active power pulsation is produced by a control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive power. A combination of these two control algorithms depending on operating requirements and depth of grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions, leading to a high-performance DFIG wind turbine system with unbalanced grid adaptive features.

능동전력필터에 의한 전류형 인버터 구동 유도모터의 입력전류 및 토크맥동 보상 (Input Current/Torque Ripple Compensation of Current Source Induction Motor Drives using Active Power Filters)

  • 정영국;조재연;임영철
    • 전력전자학회논문지
    • /
    • 제6권2호
    • /
    • pp.158-163
    • /
    • 2001
  • PWM 모드로 동작하는 전류형 인버터(CSI)는 구형파 제어형 CSI에 비해 구조가 복잡하여 가격이 비싸지고 공진발생 가능성이 크며 스위칭 손실, EMI등에 의해 동작 효율이 낮다. 그러나 구형파 제어모드의 CSI는 출력전류에 저차 고조파가 다량으로 함유되어 있기 때문에 모터의 토크 맥동이 발생된다. 따라서 본 연구에서는 CSI구동 유도 모터의 토크 맥동을 감소하기 위해, CSI와 유도모터 사이에 능동전력필터를 설피하여 유도모터의 입력전류에 함유되어 있는 고조파 성분을 보상하는 시스템을 제안하였다. 고조파를 보상하기 위한 알고지름으로는 연산과정에 전압이 필요치 않는 노치 필터법을 사용하였으며 PSIM 시뮬레이션에 의해 제안된 시스템의 타단성을 입증할 수 있었다.

  • PDF

Ground Base Laser Torque Applied on LEO Satellites of Various Geometries

  • Khalifa, N.S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.484-490
    • /
    • 2012
  • This paper is devoted to investigate the feasibility of using a medium power ground-based laser to produce a torque on LEO satellites of various shapes. The laser intensity delivered to a satellite is calculated using a simple model of laser propagation in which a standard atmospheric condition and linear atmospheric interaction mechanism is assumed. The laser force is formulated using a geocentric equatorial system in which the Earth is an oblate spheroid. The torque is formulated for a cylindrical satellite, spherical satellites and for satellites of complex shape. The torque algorithm is implemented for some sun synchronous low Earth orbit cubesats. Based on satellites perigee height, the results demonstrate that laser torque affecting on a cubesat has a maximum value in the order of $10^{-9}$ which is comparable with that of solar radiation. However, it has a minimum value in the order of $10^{-10}$ which is comparable with that of gravity gradient. Moreover, the results clarify the dependency of the laser torque on the orbital eccentricity. As the orbit becomes more circular it will experience less torque. So, we can conclude that the ground based laser torque has a significant contribution on the low Earth orbit cubesats. It can be adjusted to obtain the required control torque and it can be used as an active attitude control system for cubesats.

전기자동차용 표면 부착형 영구자석 동기 전동기의 토크제어를 위한 유한 제어 요소 모델 예측제어(FCS-MPC) 기법 (The Finite Control Set Model Predictive Torque Control Method for Surface Mounted Permanent Magnetic Synchronous Motor of Electric Vehicle)

  • 박성환;이영일
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.453-462
    • /
    • 2016
  • This paper proposes a torque control method for surface mounted permanent magnetic synchronous motor (PMSM) driven by a 2-level voltage source driven inverter, which has fast torque response and small torque ripple. The proposed torque control method follows the finite control set model predictive control (FCS-MPC) strategy. A reference state is derived at each time step for the given time varying torque reference and the cost index is defined so that the tracking error for this reference state should be penalized. The choice of an optimal output voltage vector is made first from the 6 possible active voltage vectors of the 2-level voltage source inverter. Then a modulation factor for the chosen optimal voltage vector is obtained so that the torque ripple can be reduced further. It is shown that the proposed FCS-MPC control method yields fast torque tracking response and small torque ripple through simulation and experiments.

전달경로의 차이를 이용한 새로운 차량용 능동 머플러의 개발 (New Active Muffler System Utilizing Destructive Interference by Difference of Transmission Paths)

  • 황요하;이종민;김승종
    • 한국소음진동공학회논문집
    • /
    • 제12권5호
    • /
    • pp.374-379
    • /
    • 2002
  • A new active muffler system has been developed and its superior performance on both noise reduction and engine torque increase is demonstrated with experiment. Main characteristic of the proposed muffler system is the use of destructive interference by transmission path difference of divided exhaust pipes to reduce major exhaust noise components thereby overcoming problems of other active exhaust noise control methods. The exhaust pipe is divided into two sections and joined again downstream. One divided pipe has a sliding mechanism to vary its length, which is controlled to make half wavelength transmission path difference for the major engine rpm frequency. In this system one divided pipe is used to control major rpm frequency and its Harmonics and another pipe is used to control noise component double the frequency of rpm. An after-market tuning muffler, which has very simple internal structure and minimal back pressure, is also installed to remove remaining wideband noise. To make the system to be small enough to be practical, conventional muffler is also installed and used in low rpm range and active muffler is only employed in high rpm range. Noise reduction of the proposed system is comparable to conventional passive muffler. The engine dynamo test has proved the proposed system can recover almost all the torque lost by conventional muffler.

토크맵을 이용한 칼럼형 전기식 동력조향 시스템의 제어로직 (Control Logic Using Torque Map for a Column-Type Electric Power Steering System)

  • 김지훈;송재복
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.186-193
    • /
    • 2000
  • EPS(Electric Power Steering) systems have many advantages over traditional hydraulic power steering systems in space efficiency engine efficiency and environmental compatibility. In this paper an EPS system control logic using a torque map is proposed. The main function of the EPS system is to reduce the steering torque exerted by a driver by assist of an electric motor. Vehcile speed steering torque and steering wheel angle are measured and fed back to the EPS control system where appropriate assist torque is generated to assist the operator's steering effort. Another capability of the EPS system for easy adaptation to different steering feels via simple tuning is demonstrated by the experiments. It will be also verified that the EPS system can also improve damping and return performance of the steering wheel by control of the assist motor.

  • PDF

후륜 구동 인휠 전기 자동차의 구동 및 현가 통합제어시스템 (Integrated Chassis Control System of a Rear In-wheel Motor Vehicle)

  • 김현동;최규재
    • 한국자동차공학회논문집
    • /
    • 제24권4호
    • /
    • pp.439-446
    • /
    • 2016
  • An in-wheel motor vehicle is a type of car that is equipped with an electric motor for each wheel. It is possible to acquire vehicle stability through a seperate driving torque control per wheel, since it directly generates the driving torque via the wheel motors. However, the vehicle ride comfort and road holding performance worsen depending on the increase of the wheel weights. In order to compensate for the impaired performance, an integrated chassis control system of the rear in-wheel motor vehicle is proposed. The proposed integrated chassis control system is composed of a driving torque control system, a semi-active suspension system, and an ESC system. According to the vehicle dynamic simulation of an in-wheel motor vehicle equipped with the integrated chassis control system, it is found that the system can improve the driving stability, ride comfort, and driving efficiency of the in-wheel motor vehicle.