• 제목/요약/키워드: Active suspension control

검색결과 283건 처리시간 0.022초

무인헬기용 Macrogranule(GG) 제초제의 안정성 및 살포방법 연구 (Studies on Application Method and Safety of Macrogranule(GG) Herbicide for Remote-controlled Aerial Application)

  • 윤철수;배창휴;이성춘;김경현;이계환;조태경;황인천
    • 한국잡초학회지
    • /
    • 제31권3호
    • /
    • pp.294-307
    • /
    • 2011
  • 무인헬기 살포로 논에 발생하는 잡초를 방제할 목적으로 macrogranule(GG) 제초제를 개발하였다. 약제 제조와 제조약제의 안정성, 살포방법에 따른 적용방법을 조사하였고, 제형별 살포소요시간 경제성을 분석한 결과를 요약하면 다음과 같다. 제조 GG의 입경(粒經)은 2.5~3mm 범위내에 85%이상을 차지하였고, 가비중은 $0.2\sim0.4g\;mL^{-1}$로 수면에서 부유성을 갖고 확산되는 입제고형물이었다. GG의 저장안정성은 $54{\pm}2^{\circ}C$ 항온기에서 2, 4, 6, 8주간 저장 후 halosulfuron-methyl을 HPLC로, mefenacet는 GC로 분석한 결과 유효성분 및 외형 변화가 없이 안정되어 있었다. GG의 수중붕괴성은 온도가 상승할수록 증가하였다. 또 담수 중 pH별 수중붕괴성은 담수 pH의 영향은 없었다. GG의 살포거리는 손살포, 도구살포 및 기계살포 등에서 각각 4~5m, 7m, 10~12m로 살포방법에 따라 달랐다. GG의 약효 및 작물안전성은 손살포, 도구살포, 기계살포 및 무인헬기살포에서 모두 우수하였다. 제형간 $4,000m^2$ 기준 손살포 소요시간은 GG, GR, SC, TB가 각각 38분 4초, 42분 20초, 38분 10초, 21분 4초였으나, 무인헬기 살포시 1분 32초를 나타냈다. 제형의 형태 및 특성상 무인헬기살포가 가능한 제형은 SC, GG였다.

Ortho-phenylphenol을 주성분을 하는 훈증소독제의 Pseudomonas aeruginosa와 Enterococcus hirae에 대한 살균효과 (Bactericidal Efficacy of a Fumigation Disinfectant with Ortho-phenylphenol as an Active Ingredient Against Pseudomonas Aeruginosa and Enterococcus Hirae)

  • 차춘남;박은기;김용팔;유은아;유창열;홍일화;김석;이후장
    • 한국식품위생안전성학회지
    • /
    • 제29권1호
    • /
    • pp.60-66
    • /
    • 2014
  • 본 연구는 P. aeruginosa와 E. hirae을 대상으로 ortho-phenylphenol 20%를 함유한 훈증소독제, Fumagari $OPP^{(R)}$의 살균효과를 평가하기 위해 수행되었다. 예비 시험에서, P. aeruginosa와 E. hirae의 현탁액 균수는 각각 $2.8{\times}10^8$$3.6{\times}10^8CFU/mL$이었으며, 모든 훈증소독제에 노출시킨 담체의 균수는 모두 평판배지법과 여과법으로 배양한 시험균주 현탁액의 균수의 50%보다 많았다. 또한, 대조 담체로부터 회복된 P. aeruginosa와 E. hirae 균수는 각각 $2.9{\times}10^6$$2.7{\times}10^6CFU/mL$이었다. 훈증소독제의 살균효과 시험에서는, 훈증소독제를 처리한 담체의 P. aeruginosa와 E. hirae의 감소 균수는 각각 6.46와 5.19 logCFU/mL로 나타났다. 이상의 결과로부터, 훈증소독제, Fumagari $OPP^{(R)}$는 P. aeruginosa와 E. hirae에 대해 효과적인 살균력을 갖는 것으로 확인되었으며, 병원성 세균에 오염된 식품재료 및 주방용품의 소독에 적용할 수 있을 것으로 사료된다.

Cefoperazone(T-1551)의 약리학적 연구 (Pharmacological Studies of Cefoperazone(T-1551))

  • 임정규;홍사악;박찬웅;김명석;서유헌;신상구;김용식;김혜원;이정수;장기철;이상국;장우현;김익상
    • 대한약리학회지
    • /
    • 제16권2호
    • /
    • pp.55-70
    • /
    • 1980
  • The pharmacological and microbiological studies of Cefoperazone (T-1551, Toyama Chemical Co., Japan) were conducted in vitro and in vivo. The studies included stability and physicochemical characteristics, antimicrobial activity, animal and human pharmacokinetics, animal pharmacodynamics and safety evaluation of Cefoperazone sodium for injection. 1) Stability and physicochemical characteristics. Sodium salt of cefoperazone for injection had a general appearance of white crystalline powder which contained 0.5% water, and of which melting point was $187.2^{\circ}C$. The pH's of 10% and 25% aqueous solutions were 5.03 ana 5.16 at $25^{\circ}C$. The preparations of cefoperazone did not contain any pyrogenic substances and did not liberate histamine in cats. The drug was highly compatible with common infusion solutions including 5% Dextrose solution and no significant potency decrease was observed in 5 hours after mixing. Powdered cefoperazone sodium contained in hermetically sealed and ligt-shielded container was highly stable at $4^circ}C{\sim}37^{\circ}C$ for 12 weeks. When stored at $4^{\circ}C$ the potency was retained almost completely for up to one year. 2) Antimicrobial activity against clinical isolates. Among the 230 clinical isolates included, Salmonella typhi was the most susceptible to cefoperazone, with 100% inhibition at MIC of ${\leq}0.5{\mu}g/ml$. Cefoperazone was also highly active against Streptococcus pyogenes(group A), Kletsiella pneumoniae, Staphylococcus aureus and Shigella flexneri, with 100% inhibition at $16{\mu}g/ml$ or less. More than 80% of Escherichia coli, Enterobacter aerogenes and Salmonella paratyphi was inhibited at ${\leq}16{\mu}/ml$, while Enterobacter cloaceae, Serratia marcescens and Pseudomonas aerogenosa were somewhat less sensitive to cefoperagone, with inhibitions of 60%, 55% and 35% respectively at the same MIC. 3) Animal pharmacokinetics Serum concentration, organ distritution and excretion of cefoperazone in rats were observed after single intramuscular injections at doses of 20 mg/kg and 50 mg/kg. The extent of protein binding to human plasma protein was also measured in vitro br equilibrium dialysis method. The mean Peak serum concentrations of $7.4{\mu}g/ml$ and $16.4{\mu}/ml$ were obtained at 30 min. after administration of cefoperazone at doses of 20 mg/kg and 50 mg/kg respectively. The tissue concentrations of cefoperazone measured at 30 and 60 min. were highest in kidney. And the concentrations of the drug in kidney, liver and small intestine were much higher than in blood. Urinary and fecal excretion over 24 hours after injetcion ranged form 12.5% to 15.0% in urine and from 19.6% to 25.0% in feces, indicating that the gastrointestinal system is more important than renal system for the excretion of cefoperazone. The extent of binding to human plasma protein measured by equilibrium dialysis was $76.3%{\sim}76.9%$, which was somewhat lower than the others utilizing centrifugal ultrafiltration method. 4) Animal pharmacodynamics Central nervous system : Effects of cefoperazone on the spontaneous movement and general behavioral patterns of rats, the pentobarbital sleeping time in mice and the body temperature in rabbits were observed. Single intraperitoneal injections at doses of $500{\sim}2,000mg/kg$ in rats did not affect the spontaneous movement ana the general behavioral patterns of the animal. Doses of $125{\sim}500mg/kg$ of cefoperazone injected intraperitonealy in mice neither increased nor decreased the pentobarbital-induced sleeping time. In rabbits the normal body temperature was maintained following the single intravenous injections of $125{\sim}2,000mg/kg$ dose. Respiratory and circulatory system: Respiration rate, blood pressure, heart rate and ECG of anesthetized rabbits were monitored for 3 hours following single intravenous injections of cefoperazone at doses of $125{\sim}2,000mg/kg$. The respiration rate decreased by $3{\sim}l7%$ at all the doses of cefoperazone administered. Blood pressure did not show any changes but slight decrease from 130/113 to 125/107 by the highest dose(2,000 mg/kg) injected in this experiment. The dosages of 1,000 and 2,000 mg/kg seemed to slightly decrease the heart rate, but it was not significantly different from the normal control. All the doses of cefoperazone injected were not associated with any abnormal changes in ECG findings throughout the monitering period. Autonomic nervous system and smooth muscle: Effects of cefoperazone on the automatic movement of rabbit isolated small intestine, large intestine, stomach and uterus were observed in vitro. The autonomic movement and tonus of intestinal smooth muscle increased at dose of $40{\mu}g/ml$ in small intestine and at 0.4 mg/ml in large intestine. However, in stomach and uterine smooth muscle the autonomic movement was slightly increased by the much higher doses of 5-10 mg/ml. Blood: In vitro osmotic fragility of rabbit RBC suspension was not affected by cefoperazone of $1{\sim}10mg/ml$. Doses of 7.5 and 10 mg/ml were associated with 11.8% and 15.3% prolongation of whole blood coagulation time. Liver and kidney function: When measured at 3 hours after single intravenous injections of cefoperaonze in rabbits, the values of serum GOT, GPT, Bilirubin, TTT, BUN and creatine were not significantly different from the normal control. 5) Safety evaluation Acute toxicity: The acute toxicity of cefoperazone was studied following intraperitoneal and intravenous injections to mice(A strain, 4 week old) and rats(Sprague-Dawler, 6 week old). The LD_(50)'s of intraperitonealy injected cefoperazone were 9.7g/kg in male mice, 9.6g/kg in female mice and over 15g/kg in both male and female rats. And when administered intravenously in rats, LD_(50)'s were 5.1g/kg in male and 5.0g/kg in female. Administrations of the high doses of the drug were associated with slight inhibition of spontaneous movement and convulsion. Atdominal transudate and intestinal hyperemia were observed in animals administered intraperitonealy. In rats receiving high doses of the drug intravenously rhinorrhea and pulmonary congestion and edema were also observed. Renal proximal tubular epithelial degeneration was found in animals dosing in high concentrations of cefoperazone. Subacute toxicity: Rats(Sprague-Dawley, 6 week old) dosing 0.5, 1.0 and 2.0 g/kg/day of cefoperazone intraperitonealy were observed for one month and sacrificed at 24 hours after the last dose. In animals with a high dose, slight inhibition of spontaneous movement was observed during the experimental period. Soft stool or diarrhea appeared at first or second week of the administration in rats receiving 2.0g/kg. Daily food consumption and weekly weight gain were similar to control during the administration. Urinalysis, blood chemistry and hematology after one month administration were not different from control either. Cecal enlargement, which is an expected effect of broad spectrum antibiotic altering the normal intestinal microbial flora, was observed. Intestinal or peritoneal congestion and peritonitis were found. These findings seemed to be attributed to the local irritation following prolonged intraperitoneal injections of hypertonic and acidic cefoperazone solution. Among the histopathologic findings renal proximal tubular epithelial degeneration was characteristic in rats receiving 1 and 2g/kg/day, which were 10 and 20 times higher than the maximal clinical dose (100 mg/kg) of the drug. 6) Human pharmacokinetics Serum concentrations and urinary excretion were determined following a single intravenous injection of 1g cefoperazone in eight healthy, male volunteers. Mean serum concentrations of 89.3, 61.3, 26.6, 12.3, 2.3, and $1.8{\mu}g/ml$ occured at 1,2,4,6,8 and 12 hours after injection respectively, and the biological half-life was 108 minutes. Urinary excretion over 24 hours after injection was up to 43.5% of administered dose.

  • PDF