• Title/Summary/Keyword: Active fiber composite

Search Result 75, Processing Time 0.025 seconds

Hybrid vibration control of smart laminated composite beams using piezoelectric and viscoelastic material (압전재료와 점탄성 재료를 이용한 지능 적층보의 하이브리드 진동 제어)

  • 강영규;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.133-137
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained-layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method, This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

A phase synthesis time reversal impact imaging method for on-line composite structure monitoring

  • Qiu, Lei;Yuan, Shenfang
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.303-320
    • /
    • 2011
  • Comparing to active damage monitoring, impact localization on composite by using time reversal focusing method has several difficulties. First, the transfer function of the actuator-sensor path is difficult to be obtained because of the limitation that no impact experiment is permitted to perform on the real structure and the difficulty to model it because the performance of real aircraft composite is much more complicated comparing to metal structure. Second, the position of impact is unknown and can not be controlled as the excitation signal used in the active monitoring. This makes it not applicable to compare the difference between the excitation and the focused signal. Another difficulty is that impact signal is frequency broadband, giving rise to the difficulty to process virtual synthesis because of the highly dispersion nature of frequency broadband Lamb wave in plate-like structure. Aiming at developing a practical method for on-line localization of impact on aircraft composite structure which can take advantage of time reversal focusing and does not rely on the transfer function, a PZT sensor array based phase synthesis time reversal impact imaging method is proposed. The complex Shannon wavelet transform is presented to extract the frequency narrow-band signals from the impact responded signals of PZT sensors. A phase synthesis process of the frequency narrow-band signals is implemented to search the time reversal focusing position on the structure which represents the impact position. Evaluation experiments on a carbon fiber composite structure show that the proposed method realizes the impact imaging and localization with an error less than 1.5 cm. Discussion of the influence of velocity errors and measurement noise is also given in detail.

Development and Durability Evaluation of a Bimaterial Composite Frame by Pultrusion Process (인발성형 공정을 통한 이종재료 복합소재 프레임 개발 및 내구성 평가)

  • Lee, Haksung;Kang, Shinjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.145-151
    • /
    • 2014
  • Recently, the growing demand for weight reduction and improved structure durabilityfor commercial vehicles has led to active research into the development and application of suitablecomposite materials. This studysuggests abimaterial composite frame produced by apultrusion process to replace steel frames. We focused on the development of a composite frameconsisting of two types of materialsby mixing anorthotropic material with anisotropic material. The inside layer consisted of an aluminum pipe, and the outside layer was composed of a glass fiber pipe. To determine the strength and failure mechanisms of the composite material, tensile tests, shear tests, and three-point bending tests were conducted, followed by fatigue tests. After static testing, the fatigue tests were conducted at a load frequency of 5 Hz, a stress ratio (R) of 0.1, and an endurance limit of $10^6$ for the S-N curve. The resultsshowed that the failure modes were related to both the core design and the laminating conditions.

Active Vibration Control of Smart Hull Structure Using MFC Actuators (MFC 작동기를 이용한 스마트 Hull 구조물의 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1408-1415
    • /
    • 2005
  • Active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is performed. Finite element modeling is used to obtain governing equations of motion and boundary effects of end-capped smart hull structure. Equivalent interdigitated electrode model is developed to obtain piezoelectric couplings of MFC actuator. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure, and compared to the results of experimental investigation. MFC actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller and structural vibration is controlled effectively.

Active Vibration Control of Smart Hull Structure Using MFC Actuators (MFC 작동기를 이용한 스마트 Hull 구조물의 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.217-222
    • /
    • 2005
  • Active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is performed. Finite element modeling is used to obtain governing equations of motion and boundary effects of end-capped smart hull structure. Equivalent interdigitated electrode model is developed to obtain piezoelectric couplings of MFC actuator. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure, and compared to the results of experimental investigation. MFC actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller and structural vibration is controlled effectively.

  • PDF

Design and Performance Evaluation of Mini-Lightweight Piezo-Composite Actuators

  • Tran, Anh Kim;Yoon, Kwang-Joon
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.327-338
    • /
    • 2009
  • In this paper, through an evaluation process conducted on several designs of mini-LIPCA (Lightweight Piezo-Composite curved Actuator), an optimal design of a mini-LIPCA has been proposed. Comparing with the LIPCA-C2, the design of the mini-LIPCA comes with reduced overall size and a thinner active layer. Since a variation in the number and lay-up of fiber composite layers may strongly affect the performance of the device, one is able to configure several designs of mini-LIPCA. The evaluation process is then followed in order to determine a configuration which characterizes the possibly optimal performance. That is, a design of a mini-LIPCA is said to be optimal if it is capable of producing a maximum out-of-plane displacement. The size of the LIPCA to be investigated was selected to be $10\;mm\;{\times}\;20\;mm$ in which the thickness of PZT plate is about 0.1 mm. The thickness of glass/epoxy and carbon/epoxy are about 0.09 mm and 0.1 mm, respectively. The evaluation process has been conducted thoroughly, i.e., analytical estimation, numerical approximation and the experimental measurement are all involved. Firstly, the design equation was used to calculate essential parameters of proposed lay-up configurations. Secondly, ANSYS, a commercial FEA package, was utilized to estimate displacement outputs of the actuators upon being excited. Finally, experimental measurements were able to verify the predicted results.

Microstructure and Processing of Bioactive Ceramic Composites as Dental Implants (치과 임플란트용 bioactive 세라믹 복합재료의 제조와 미세조직)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • The purpose of this study was to process bio-active glass ceramic composite, reinforced with sapphire fibers, by hot press. Also to study the interface of the matrix and the sapphire fiber, and the mechanical properties. Glass raw materials melted in Pt crucible at 1300$^{\circ}C$ during 3.5 hours. The melt was crushed in ball mill and then crushed material, ground and sieved to $<40{\beta}{\mu}m$. Sapphire fibers cut (30mm) and aligned. Powder and fibers hot pressed. The micrographs show good bonding between the matrix and the fiber and no porosity in the glass matrix. This means ideal fracture phenomena. Glass is fractured before the fiber. This is indication of good fracture strength. EDXS showing aluminum rich phase and crystalline phase. Bright field image of the matrix showing crystalline phase. Also diffraction pattern of TEM showing the crystalline phase and more than one phase. Strength of the samples was determined by 3 point bend testing. Strength of the 10vol% sample was approximately 69MPa, while strength of the control sample is 35MPa. Conclusions through this study as follow: 1. Micrographs show no porosity in the glass matrix and the interface. 2. The interface between the fiber and the glass matrix show no gaps. 3. Fracture of the glass indicates characteristic fiber-matrix separation. 4. Presence of crystalline phase at high processing temperature. 5. Sapphire is compatible with bioactive glass.

  • PDF

Active Vibration Control Experiment on Cylindrical Shell equipped with MFC Actuators (MFC 작동기를 이용한 실린더 쉘의 능동진동제어 실험)

  • Bae, Byung-Chan;Jung, Moon-San;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.457-462
    • /
    • 2006
  • This paper is concerned with the active vibration control experiment on cylindrical shell equipped with Macro Fiber Composite(MFC) actuators. The MFC actuators were glued to the cylindrical shell in circumferential directions. To verify the theoretical result, vibration test using impact hammer and accelerometer was carried out. It was found from experiments that theoretical result predicts experimental result to some extent. The positive position feedback controllers were designed and applied to the test article. It was observed that the resonant amplitude of the fundamental mode was reduced by 20dB thus achieving active vibration control. The active vibration control of the response subject to non resonant excitation has been of interest. We developed the combination of the positive position feedback controller which can cope with the fundamental mode and the positive position feedback controller which can counteract the external disturbance with non resonant frequency. It was found from experiments that the hybrid controller can suppress the vibration amplitude successfully.

  • PDF

Active shape change of an SMA hybrid composite plate

  • Daghia, Federica;Inman, Daniel J.;Ubertini, Francesco;Viola, Erasmo
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.91-100
    • /
    • 2010
  • An experimental study was carried out to investigate the shape control of plates via embedded shape memory alloy (SMA) wires. An extensive body of literature proposes the use of SMA wires to actively modify the shape or stiffness of a structure; in most cases, however, the study focuses on modeling and little experimental data is available. In this work, a simple proof of concept specimen was built by attaching four prestrained SMA wires to one side of a carbon fiber laminate plate strip. The specimen was clamped at one end and tested in an environmental chamber, measuring the tip displacement and the SMA temperature. At heating, actuation of the SMA wires bends the plate; at cooling deformation is partially recovered. The specimen was actuated a few times between two fixed temperatures $T_c$ and $T_h$, whereas in the last actuation a temperature $T_f$ > $T_h$ was reached. Contrary to most model predictions, in the first actuation the transformation temperatures are significantly higher than in the following cycles, which are stable. Moreover, if the temperature $T_h$ is exceeded, two separate actuations occur during heating: the first follows the path of the stable cycles; the second, starting at $T_h$, is similar to the first cycle. An interpretation of the phenomenon is given using some differential scanning calorimeter (DSC) measurements. The observed behavior emphasizes the need to build a more comprehensive constitutive model able to include these effects.

Design and Simulation of Integral Twist Control for Helicopter Vibration Reduction

  • Shin, Sang-Joon;Cesnik Carlos E. S.;Hall Steven R.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.24-34
    • /
    • 2007
  • Closed-loop active twist control of integral helicopter rotor blades is investigated in this paper for reducing hub vibration induced in forward flight. A four-bladed fully articulated integral twist-actuated rotor system has been designed and tested successfully in wind tunnel in open-loop actuation. The integral twist deformation of the blades is generated using active fiber composite actuators embedded in the composite blade construction. An analytical framework is developed to examine integrally twisted helicopter blades and their aeroelastic behavior during different flight conditions. This aeroelastic model stems from a three-dimensional electroelastic beam formulation with geometrical-exactness, and is coupled with finite-state dynamic inflow aerodynamics. A system identification methodology that assumes a linear periodic system is adopted to estimate the harmonic transfer function of the rotor system. A vibration minimizing controller is designed based on this result, which implements a classical disturbance rejection algorithm with some modifications. Using the established analytical framework, the closed-loop controller is numerically simulated and the hub vibratory load reduction capability is demonstrated.