• Title/Summary/Keyword: Active fiber composite

Search Result 75, Processing Time 0.028 seconds

Novel design of interdigitated electrodes for piezoelectric transducers

  • Jemai, Ahmed;Najar, Fehmi
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.369-382
    • /
    • 2018
  • Novel design of interdigitated electrodes capable of increasing the performance of piezoelectric transducers are proposed. The new electrodes' geometry improve the electromechanical coupling by offering an enhanced adaptation of the electric field to the interdigitated electrode configuration. The proposed analysis is based on finite element modeling and takes into account local polarization effect. It is shown that the proposed electrodes considerably increase the strain generation compared to flat electrode arrangement used for Macro Fiber Composite (MFC) and Active Fiber Composite (AFC) actuators. Also, electric field singularities are reduced allowing better reliability of the transducer against electric failure.

Vibration Control of a Composite Plate with Piezoelectric Sensor and Actuator (압전센서와 액츄에이터를 이용한 복합재 평판의 진동제어)

  • 권대규;유기호;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.207-210
    • /
    • 2002
  • This paper is concerned with the experiments on the active vibration control of a plate with piezoceramic sensors and actuators. The natural frequencies of the composite plate featured by a piezo-film sensor and piezo-ceramic actuator are calculated by using the modal analysis method. Modal coordinates are introduced to obtain the state equations of the structural system. Six natural frequencies were considered in the modelling, because robust control theory which has inherent robustness to structured uncertainty is adopted to suppress the transients vibrations of a glass fiber reinforced(GFR) composite beam. A robust controller satisfying the nominal performance and robust performance is designed using robust theory based on the structured singular value. Simulations were carried out with the designed controller and effectiveness of the robust control strategy was verified by results.

  • PDF

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material (압전재료와 점탄성 재료를 이용한 지능 복합적층보의 하이 브리드 진동제어)

  • Kang, Young-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.148-153
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping hale been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

Processing and Mode 1 Fracture Toughness of Carbon Fiber Composites Reinforced With Carbon Nanotubes (탄소나노튜브로 보강된 탄소섬유복합재의 제조 공정과 모드 1 파괴인성)

  • Kim, Han-Sang
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.39-43
    • /
    • 2011
  • For the last twenty years, nanocomposites composed of polymer matrices reinforced with carbon nanotubes (CNTs) have been an active research area. Also, the polymeric nanocomposites reinforced with CNTs are being investigated to be used matrices of carbon fiber composites. Carbon tiber composites have achieved advanced properties in the direction of carbon fibers due to enhanced carbon fiber properties. However, the matrix dominated properties need to be improved further to fully utilize the advanced carbon fiber properties. In particular, delamination is a typical and critical reason for fracture of carbon fiber composites. Mode I fracture toughness test which is also often called double cantilever beam (DCB) test shows the resistance to delamination of carbon fiber composites and this test is performed on carbon fiber composite samples incorporated with carbon nanotubes functionalized with various functional groups. The specimens with mat-like CNT layers showed the increased fracture toughness by 10.6%.

Effective electromechanical coupling coefficient of adaptive structures with integrated multi-functional piezoelectric structural fiber composites

  • Koutsawa, Yao;Tiem, Sonnou;Giunta, Gaetano;Belouettar, Salim
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.501-515
    • /
    • 2014
  • This paper presents a linear computational homogenization framework to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) of adaptive structures with piezoelectric structural fiber (PSF) composite elements. The PSF consists of a silicon carbide (SiC) or carbon core fiber as reinforcement to a fragile piezo-ceramic shell. For the micro-scale analysis, a micromechanics model based on the variational asymptotic method for unit cell homogenization (VAMUCH) is used to evaluate the overall electromechanical properties of the PSF composites. At the macro-scale, a finite element (FE) analysis with the commercial FE code ABAQUS is performed to evaluate the effective EMCC for structures with the PSF composite patches. The EMCC is postprocessed from free-vibrations analysis under short-circuit (SC) and open-circuit (OC) electrodes of the patches. This linear two-scale computational framework may be useful for the optimal design of active structure multi-functional composites which can be used for multi-functional applications such as structural health monitoring, power harvest, vibration sensing and control, damping, and shape control through anisotropic actuation.

Effects of Curing Conditions on Compressive Strength and Tensile Behavior of Alkali-Active Slag-Based Fiber Reinforced Composites (양생 조건이 알칼리 활성 슬래그 기반 섬유보강 복합재료의 압축강도와 인장거동에 미치는 영향)

  • Park, Se-Eon;Choi, Jeong-Il;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.260-267
    • /
    • 2021
  • The purpose of this study was to experimentally investigate the effects of curing methods on the compressive strength and tensile behavior of alkali-activated slag-based fiber-reinforced composite with a water-to-binder ratio of 15%. Three kinds of mixtures according to the curing conditions were prepared and compressive strength and tension tests were performed. Test results showed that the compressive strength and the first cracking strength of composites decreased when high temperature curing and air curing were adopted, while tensile strain capacity of composites increased. It was also observed that crack spacing and crack width of composites decreased by applying high temperature and air curing.

Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

  • Park, Seung-Hee;Yun, Chung-Bang;Inman, Daniel J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.217-223
    • /
    • 2007
  • This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

Vibration Suppression of Hull Structure Using MFC Actuators (MFC 작동기를 이용한 Hull 구조물의 진동 저감)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.587-595
    • /
    • 2007
  • Performance evaluation of advanced piezoelectric composite actuator is conducted with its application of structural vibration control. Characteristics of MFC(macro fiber composite) actuator are investigated by comparing traditional piezoceramic patch actuator. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure with MFC actuator. Dynamic characteristics of the smart hull structure are studied through modal analysis and experimental investigation. LQG control algorithm is employed to investigate active damping of hull structure. It is observed that vibration of hull structure is suppressed effectively by the MFC actuators.

Vibration Suppression of Hull Structure Using MFC Actuators (MFC 작동기를 이용한 Hull 구조물의 진동 저감)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1119-1124
    • /
    • 2007
  • Performance evaluation of advanced piezoelectric composite actuator is conducted with its application of structural vibration control. Characteristics of MFC (macro fiber composite) actuator are investigated by comparing traditional piezoceramic patch actuator. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure with MFC actuator. Dynamic characteristics of the smart hull structure are studied through modal analysis and experimental investigation. LQG control algorithm is employed to investigate active damping of hull structure. It is observed that vibration of hull structure is suppressed effectively by the MFC actuators.

  • PDF