References
- Alghisi, D., Dalola, S., Ferrari, M. and Ferrari, V. (2015), "Triaxial ball-impact piezoelectric converter for autonomous sensors exploiting energy harvesting from vibrations and human motion", Sensors. Actuat. A: Phys., 233, 569-581.
- Ammar, Y., Buhrig, A., Marzencki, M., Charlot, B., Basrour, S., Matou, K. and Renaudin, M. (2005), "Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator", Proceedings of the 2005 Joint Conf. on Smart Objects and Ambient intelligence: Innovative Context-Aware Services: Usages and Technologies, Grenoble, France.
- Avsar, A.L. and Sahin, M. (2016), "Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate", Smart Struct. Syst., 18(2), 249-265. https://doi.org/10.12989/sss.2016.18.2.249
- Beckert, W. and Kreher, W.S. (2003), "Modelling Piezoelectric modules with Interdigitated electrode structures", Comput. Mater. Sci., 26, 36-45. https://doi.org/10.1016/S0927-0256(02)00390-7
- Bowen, C.R., Bowles, A., Drake, S., Johnson, N. and Mahon, S. (1999), "Fabrication and finite element modelling of interdigitated electrodes", Ferroelectrics, 228, 257-269. https://doi.org/10.1080/00150199908226140
- Bowen, C.R., Nelson, L.J., Stevens, R., Gain, M.G. and Stewart, M. (2006), "Optimization of Interdigitated electrodes for piezoelectric actuators and Active Fiber composites", J. Electroceram., 16, 263-269. https://doi.org/10.1007/s10832-006-9862-8
- Deraemaeker, A. and Nasser, H. (2010), "Numerical evaluation of the equivalent properties of Macro Fiber Composite (MFC) transducers using periodic homogenization", Int. J. Solids Struct., 47, 3272-3285. https://doi.org/10.1016/j.ijsolstr.2010.08.006
- Ghodssi R. and P. Lin (2011), MEMS Materials and Processes Handbook, USA.
- Hagood, N.W., Kindel, R., Ghandi, K. and Gaudenzi, P. (1993), "Improving transverse actuation of piezoceramics using interdigitated surface electrodes", Proceedings of the SPIE 1917, Smart Structures and Materials 1993: Smart Structures and Intelligent Systems, 341, Albuquerque, NM, USA, February, 1.
- Hong, Y.K., Moon, K.S., Levy, M. and Vanga, R.R. (2006), "Single-crystal film piezoelectric sensors, actuators and energy harvesters with interdigitated electrodes", Ferroelectrics, 342, 1-13. https://doi.org/10.1080/00150190600946054
- Inman, D.J., Ahmadian, M. and Claus, R.O. (2001), "Simultaneous active damping and health monitoring of aircraft panels", J. Intel. Mat. Syst. Str., 12, 775-783. https://doi.org/10.1177/104538901400438064
- Isarakorn, D., Briand, D., Janphuang, P., Sambri, A., Gariglio, S., Triscone, J.M., Guy, F., Reiner, J.W., Ahn, C.H. and Rooij, N.F. (2011), "The realization and performance of vibration harvesting MEMS devices based on an epitaxial piezoelectric thin film", Smart Mater. Struct., 20, 025015. https://doi.org/10.1088/0964-1726/20/2/025015
- Jamal, G.A., Rahman, S.L., Rana, M.M., Nafis, S.A.S., Huda, M.M. and Rahman, S.N. (2015), "An alternative approach to wind power generation using piezoelectric material", Am. J. Renew. Sust. Energ., 1, 45-50.
- Jemai, A., Najar, F., Chafra, M. and Ounaies, Z. (2014), "Mathematical modeling of an active-fiber composite energy harvester with interdigitated electrodes", J. Shock Vib., 2014.
- Jemai, A., Najar, F., Chafra, M. and Ounaies, Z. (2016), "Modeling and parametric analysis of a unimorph piezocomposite energy harvester with interdigitated electrodes", Compos. Struct., 135, 176-190.
- Kim, S.B, Park, H., Kim, S.H, Wikle, H.C., Park, J.H. and Kim, D.J. (2013), "Comparison of MEMS PZT cantilevers based on d31 and d33 modes for vibration energy harvesting", J. Microelectromech. Syst., 22, 26-33.
- Lee, B.S., Lin, S.C., Wu, W.J., Wang, X.Y., Chan, P.Z. and Lee, C.K. (2009), "Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film", J. Micromech. Microeng., 19, 065014. https://doi.org/10.1088/0960-1317/19/6/065014
- Li, Y.X., Zhang, S.Q, Schmidt, R. and Qin, X.S. (2016), "Homogenization of macro-fiber composite using Reissner-Mindlin plate theory", J. Intel. Mat. Syst. Str., 27, 2477-2488. https://doi.org/10.1177/1045389X16633763
- Lu, F., Lee, H.P. and Lim, S.P. (2004), "Modeling and analysis of micro piezoelectric power generators for microelectromechanical-systems applications", Smart Mater. Struct., 13, 57-63. https://doi.org/10.1088/0964-1726/13/1/007
- Moore, S.I. and Yong, Y.K. (2017), "Design and characterisation of cantilevers for multi-frequency atomic force microscopy", IET Micro & Nano Lett., 12, 315-320. https://doi.org/10.1049/mnl.2016.0586
- Muralt, P. (2008), "Recent progress in materials issues for piezoelectric MEMS", J. Am. Ceram. Soc., 91, 1385aAS1396.
- Nguyen, N.T., Yoon, B.S., Park, K.H. and Yoon, K.J. (2011), "Analytical model and optimal design of a d33-mode active layer for the lightweight unimorph piezo-composite actuator", J. Electroceram., 26, 175-184. https://doi.org/10.1007/s10832-011-9642-y
- Paradies, R. and Melnykowycz, M.M. (2010), "State of stress in piezoelectric elements with interdigitated electrodes", J. Electroceram., 24, 137-144. https://doi.org/10.1007/s10832-008-9547-6
- Paradies, R., Hertwig, M. and Elspass, W.J. (1996), "Shape control of an adaptive mirror at different angles of inclination", J. Intel. Mat. Syst. Str., 7, 203-210. https://doi.org/10.1177/1045389X9600700212
- Prakash, S., Kumar, T.R., Raja, S., Dwarakanathan, D., Subramani, H. and Karthikeyan, C. (2016), "Active vibration control of a full scale aircraft wing using a reconfigurable controller", J. Sound Vib., 361, 32-49. https://doi.org/10.1016/j.jsv.2015.09.010
- Sahu, K.C., Tuhkuri, J. and Reddy, J.N. (2015), "Active structural acoustic control of a softcore sandwich panel using multiple piezoelectric actuators and Reddy's higher order theory", J. Low Frequency Noise, Vibration and Active Control, 34, 385-411. https://doi.org/10.1260/0263-0923.34.4.385
- Shen, D., Park, J.H., Ajitsaria, H., Choe, S.Y., Wikle, H.C. and Kim, D.J. (2008), "The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting", J. Micromech. Microeng., 18, 055017. https://doi.org/10.1088/0960-1317/18/5/055017
- Sodano, H.A., Lloyd, J. and Inman, D.J. (2006), "An experimental comparison between several active composite actuators for power generation", Smart Mater. Struct., 15, 1211-1216. https://doi.org/10.1088/0964-1726/15/5/007
- Tadigadapa S. and Mateti, K. (2009), "Piezoelectric MEMS sensors: state-of-the-art and perspectives", Meas. Sci. Technol., 20, 092001. https://doi.org/10.1088/0957-0233/20/9/092001
- Trindade, M.A. and Benjeddou, A. (2011), "Finite element homogenization technique for the characterization of d15 shear piezoelectric macro-fibre composites", Smart Mater. Struct., 20(7), 075012. https://doi.org/10.1088/0964-1726/20/7/075012
- Zhang, S.Q., Chen, M., Zhao, G.Z., Wang, Z.X., Schmidt, R. and Qin, X.S. (2017), "Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures", Smart Struct. Syst., 19(6), 633-641. https://doi.org/10.12989/SSS.2017.19.6.633
- Zhang, S.Q., Li, Y.X. and Schmidt, R. (2015), "Modeling and simulation of macro-fiber composite layered smart structures", Compos. Struct., 126, 89-100.
- Zhang, S.Q., Wang, Z.X., Qin, X.S., Zhao, G.Z. and Schmidt, R. (2016), "Geometrically nonlinear analysis of composite laminated structures with multiple macro-fiber composite (MFC) actuators", Compos. Struct., 150, 62-72.