DOI QR코드

DOI QR Code

Novel design of interdigitated electrodes for piezoelectric transducers

  • Jemai, Ahmed (Applied Mechanics and Systems Research Laboratory, Tunisia Polytechnic School) ;
  • Najar, Fehmi (Applied Mechanics and Systems Research Laboratory, Tunisia Polytechnic School)
  • Received : 2018.07.12
  • Accepted : 2018.09.11
  • Published : 2018.10.25

Abstract

Novel design of interdigitated electrodes capable of increasing the performance of piezoelectric transducers are proposed. The new electrodes' geometry improve the electromechanical coupling by offering an enhanced adaptation of the electric field to the interdigitated electrode configuration. The proposed analysis is based on finite element modeling and takes into account local polarization effect. It is shown that the proposed electrodes considerably increase the strain generation compared to flat electrode arrangement used for Macro Fiber Composite (MFC) and Active Fiber Composite (AFC) actuators. Also, electric field singularities are reduced allowing better reliability of the transducer against electric failure.

Keywords

References

  1. Alghisi, D., Dalola, S., Ferrari, M. and Ferrari, V. (2015), "Triaxial ball-impact piezoelectric converter for autonomous sensors exploiting energy harvesting from vibrations and human motion", Sensors. Actuat. A: Phys., 233, 569-581.
  2. Ammar, Y., Buhrig, A., Marzencki, M., Charlot, B., Basrour, S., Matou, K. and Renaudin, M. (2005), "Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator", Proceedings of the 2005 Joint Conf. on Smart Objects and Ambient intelligence: Innovative Context-Aware Services: Usages and Technologies, Grenoble, France.
  3. Avsar, A.L. and Sahin, M. (2016), "Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate", Smart Struct. Syst., 18(2), 249-265. https://doi.org/10.12989/sss.2016.18.2.249
  4. Beckert, W. and Kreher, W.S. (2003), "Modelling Piezoelectric modules with Interdigitated electrode structures", Comput. Mater. Sci., 26, 36-45. https://doi.org/10.1016/S0927-0256(02)00390-7
  5. Bowen, C.R., Bowles, A., Drake, S., Johnson, N. and Mahon, S. (1999), "Fabrication and finite element modelling of interdigitated electrodes", Ferroelectrics, 228, 257-269. https://doi.org/10.1080/00150199908226140
  6. Bowen, C.R., Nelson, L.J., Stevens, R., Gain, M.G. and Stewart, M. (2006), "Optimization of Interdigitated electrodes for piezoelectric actuators and Active Fiber composites", J. Electroceram., 16, 263-269. https://doi.org/10.1007/s10832-006-9862-8
  7. Deraemaeker, A. and Nasser, H. (2010), "Numerical evaluation of the equivalent properties of Macro Fiber Composite (MFC) transducers using periodic homogenization", Int. J. Solids Struct., 47, 3272-3285. https://doi.org/10.1016/j.ijsolstr.2010.08.006
  8. Ghodssi R. and P. Lin (2011), MEMS Materials and Processes Handbook, USA.
  9. Hagood, N.W., Kindel, R., Ghandi, K. and Gaudenzi, P. (1993), "Improving transverse actuation of piezoceramics using interdigitated surface electrodes", Proceedings of the SPIE 1917, Smart Structures and Materials 1993: Smart Structures and Intelligent Systems, 341, Albuquerque, NM, USA, February, 1.
  10. Hong, Y.K., Moon, K.S., Levy, M. and Vanga, R.R. (2006), "Single-crystal film piezoelectric sensors, actuators and energy harvesters with interdigitated electrodes", Ferroelectrics, 342, 1-13. https://doi.org/10.1080/00150190600946054
  11. Inman, D.J., Ahmadian, M. and Claus, R.O. (2001), "Simultaneous active damping and health monitoring of aircraft panels", J. Intel. Mat. Syst. Str., 12, 775-783. https://doi.org/10.1177/104538901400438064
  12. Isarakorn, D., Briand, D., Janphuang, P., Sambri, A., Gariglio, S., Triscone, J.M., Guy, F., Reiner, J.W., Ahn, C.H. and Rooij, N.F. (2011), "The realization and performance of vibration harvesting MEMS devices based on an epitaxial piezoelectric thin film", Smart Mater. Struct., 20, 025015. https://doi.org/10.1088/0964-1726/20/2/025015
  13. Jamal, G.A., Rahman, S.L., Rana, M.M., Nafis, S.A.S., Huda, M.M. and Rahman, S.N. (2015), "An alternative approach to wind power generation using piezoelectric material", Am. J. Renew. Sust. Energ., 1, 45-50.
  14. Jemai, A., Najar, F., Chafra, M. and Ounaies, Z. (2014), "Mathematical modeling of an active-fiber composite energy harvester with interdigitated electrodes", J. Shock Vib., 2014.
  15. Jemai, A., Najar, F., Chafra, M. and Ounaies, Z. (2016), "Modeling and parametric analysis of a unimorph piezocomposite energy harvester with interdigitated electrodes", Compos. Struct., 135, 176-190.
  16. Kim, S.B, Park, H., Kim, S.H, Wikle, H.C., Park, J.H. and Kim, D.J. (2013), "Comparison of MEMS PZT cantilevers based on d31 and d33 modes for vibration energy harvesting", J. Microelectromech. Syst., 22, 26-33.
  17. Lee, B.S., Lin, S.C., Wu, W.J., Wang, X.Y., Chan, P.Z. and Lee, C.K. (2009), "Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film", J. Micromech. Microeng., 19, 065014. https://doi.org/10.1088/0960-1317/19/6/065014
  18. Li, Y.X., Zhang, S.Q, Schmidt, R. and Qin, X.S. (2016), "Homogenization of macro-fiber composite using Reissner-Mindlin plate theory", J. Intel. Mat. Syst. Str., 27, 2477-2488. https://doi.org/10.1177/1045389X16633763
  19. Lu, F., Lee, H.P. and Lim, S.P. (2004), "Modeling and analysis of micro piezoelectric power generators for microelectromechanical-systems applications", Smart Mater. Struct., 13, 57-63. https://doi.org/10.1088/0964-1726/13/1/007
  20. Moore, S.I. and Yong, Y.K. (2017), "Design and characterisation of cantilevers for multi-frequency atomic force microscopy", IET Micro & Nano Lett., 12, 315-320. https://doi.org/10.1049/mnl.2016.0586
  21. Muralt, P. (2008), "Recent progress in materials issues for piezoelectric MEMS", J. Am. Ceram. Soc., 91, 1385aAS1396.
  22. Nguyen, N.T., Yoon, B.S., Park, K.H. and Yoon, K.J. (2011), "Analytical model and optimal design of a d33-mode active layer for the lightweight unimorph piezo-composite actuator", J. Electroceram., 26, 175-184. https://doi.org/10.1007/s10832-011-9642-y
  23. Paradies, R. and Melnykowycz, M.M. (2010), "State of stress in piezoelectric elements with interdigitated electrodes", J. Electroceram., 24, 137-144. https://doi.org/10.1007/s10832-008-9547-6
  24. Paradies, R., Hertwig, M. and Elspass, W.J. (1996), "Shape control of an adaptive mirror at different angles of inclination", J. Intel. Mat. Syst. Str., 7, 203-210. https://doi.org/10.1177/1045389X9600700212
  25. Prakash, S., Kumar, T.R., Raja, S., Dwarakanathan, D., Subramani, H. and Karthikeyan, C. (2016), "Active vibration control of a full scale aircraft wing using a reconfigurable controller", J. Sound Vib., 361, 32-49. https://doi.org/10.1016/j.jsv.2015.09.010
  26. Sahu, K.C., Tuhkuri, J. and Reddy, J.N. (2015), "Active structural acoustic control of a softcore sandwich panel using multiple piezoelectric actuators and Reddy's higher order theory", J. Low Frequency Noise, Vibration and Active Control, 34, 385-411. https://doi.org/10.1260/0263-0923.34.4.385
  27. Shen, D., Park, J.H., Ajitsaria, H., Choe, S.Y., Wikle, H.C. and Kim, D.J. (2008), "The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting", J. Micromech. Microeng., 18, 055017. https://doi.org/10.1088/0960-1317/18/5/055017
  28. Sodano, H.A., Lloyd, J. and Inman, D.J. (2006), "An experimental comparison between several active composite actuators for power generation", Smart Mater. Struct., 15, 1211-1216. https://doi.org/10.1088/0964-1726/15/5/007
  29. Tadigadapa S. and Mateti, K. (2009), "Piezoelectric MEMS sensors: state-of-the-art and perspectives", Meas. Sci. Technol., 20, 092001. https://doi.org/10.1088/0957-0233/20/9/092001
  30. Trindade, M.A. and Benjeddou, A. (2011), "Finite element homogenization technique for the characterization of d15 shear piezoelectric macro-fibre composites", Smart Mater. Struct., 20(7), 075012. https://doi.org/10.1088/0964-1726/20/7/075012
  31. Zhang, S.Q., Chen, M., Zhao, G.Z., Wang, Z.X., Schmidt, R. and Qin, X.S. (2017), "Modeling techniques for active shape and vibration control of macro-fiber composite laminated structures", Smart Struct. Syst., 19(6), 633-641. https://doi.org/10.12989/SSS.2017.19.6.633
  32. Zhang, S.Q., Li, Y.X. and Schmidt, R. (2015), "Modeling and simulation of macro-fiber composite layered smart structures", Compos. Struct., 126, 89-100.
  33. Zhang, S.Q., Wang, Z.X., Qin, X.S., Zhao, G.Z. and Schmidt, R. (2016), "Geometrically nonlinear analysis of composite laminated structures with multiple macro-fiber composite (MFC) actuators", Compos. Struct., 150, 62-72.