• Title/Summary/Keyword: Active appearance model

Search Result 69, Processing Time 0.022 seconds

Comparison of Computer and Human Face Recognition According to Facial Components

  • Nam, Hyun-Ha;Kang, Byung-Jun;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • Face recognition is a biometric technology used to identify individuals based on facial feature information. Previous studies of face recognition used features including the eye, mouth and nose; however, there have been few studies on the effects of using other facial components, such as the eyebrows and chin, on recognition performance. We measured the recognition accuracy affected by these facial components, and compared the differences between computer-based and human-based facial recognition methods. This research is novel in the following four ways compared to previous works. First, we measured the effect of components such as the eyebrows and chin. And the accuracy of computer-based face recognition was compared to human-based face recognition according to facial components. Second, for computer-based recognition, facial components were automatically detected using the Adaboost algorithm and active appearance model (AAM), and user authentication was achieved with the face recognition algorithm based on principal component analysis (PCA). Third, we experimentally proved that the number of facial features (when including eyebrows, eye, nose, mouth, and chin) had a greater impact on the accuracy of human-based face recognition, but consistent inclusion of some feature such as chin area had more influence on the accuracy of computer-based face recognition because a computer uses the pixel values of facial images in classifying faces. Fourth, we experimentally proved that the eyebrow feature enhanced the accuracy of computer-based face recognition. However, the problem of occlusion by hair should be solved in order to use the eyebrow feature for face recognition.

Exaggerated Cartooning using a Reference Image (참조 이미지를 이용한 과장된 카투닝)

  • Han, Myoung-Hun;Seo, Sang-Hyun;Ryoo, Seung-Taek;Yoon, Kyung-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2011
  • This paper proposes the method of image cartooning, that makes cartoon-like images of a target, using reference images. We deform a target image using pre-defined reference images. For this deformation, we extract feature points from the target image by Active Appearance Model(AAM) and apply the warping method to the target using feature points of target and feature points of reference image as a basis of warping function. We create simplified cartoon-like images by abstraction of the deformed target image and drawing of edges and quantization of luminance of the abstracted image. Two main concept of cartoon(exaggeration and simplification) is inhered in this method when we use a exaggerated cartoon image as a reference image. It is possible for this method to create various results by control of warping and change of reference image.

Extraction of full body size parameters for personalized recommendation module (개인 맞춤형 추천모듈을 위한 전신 신체사이즈 추출)

  • Park, Yong-Hee;Chin, Seong-Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5113-5119
    • /
    • 2010
  • Anthropometry has been broadly explored in various fields including automobile industry, home electronic appliances, medical appliances and sports goods with aiming at reaching satisfaction to consumer's need and efficiency. However, current technologies to measure a human body still have barriers in which the methods mostly seem to be contingent on expensive devices such as scanner and digital measuring instruments and to be directly touchable to the body when obtaining body size.. Therefore, in this paper, we present a general method to automatically extract size of body from a real body image acquired from a camera and to utilize it into recommend systems including clothing and bicycle fitting. At first, Haar-like features and AdaBoost algorithm are employed to detect body position. Then features of body can be recognized using AAM. Finally clothing and bicycle recommending modules have been implemented and experimented to validate the proposed method.

Robust AAM-based Face Tracking with Occlusion Using SIFT Features (SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적)

  • Eom, Sung-Eun;Jang, Jun-Su
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.355-362
    • /
    • 2010
  • Face tracking is to estimate the motion of a non-rigid face together with a rigid head in 3D, and plays important roles in higher levels such as face/facial expression/emotion recognition. In this paper, we propose an AAM-based face tracking algorithm. AAM has been widely used to segment and track deformable objects, but there are still many difficulties. Particularly, it often tends to diverge or converge into local minima when a target object is self-occluded, partially or completely occluded. To address this problem, we utilize the scale invariant feature transform (SIFT). SIFT is an effective method for self and partial occlusion because it is able to find correspondence between feature points under partial loss. And it enables an AAM to continue to track without re-initialization in complete occlusions thanks to the good performance of global matching. We also register and use the SIFT features extracted from multi-view face images during tracking to effectively track a face across large pose changes. Our proposed algorithm is validated by comparing other algorithms under the above 3 kinds of occlusions.

Robust Face Recognition System using AAM and Gabor Feature Vectors (AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.

Automatic Denoising of 2D Color Face Images Using Recursive PCA Reconstruction (2차원 칼라 얼굴 영상에서 반복적인 PCA 재구성을 이용한 자동적인 잡음 제거)

  • Park Hyun;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.63-71
    • /
    • 2006
  • Denoising and reconstruction of color images are extensively studied in the field of computer vision and image processing. Especially, denoising and reconstruction of color face images are more difficult than those of natural images because of the structural characteristics of human faces as well as the subtleties of color interactions. In this paper, we propose a denoising method based on PCA reconstruction for removing complex color noise on human faces, which is not easy to remove by using vectorial color filters. The proposed method is composed of the following five steps: training of canonical eigenface space using PCA, automatic extraction of facial features using active appearance model, relishing of reconstructed color image using bilateral filter, extraction of noise regions using the variance of training data, and reconstruction using partial information of input images (except the noise regions) and blending of the reconstructed image with the original image. Experimental results show that the proposed denoising method maintains the structural characteristics of input faces, while efficiently removing complex color noise.

Design of Multi-agent System for Course Scheduling of Learner-oriented using Weakness Analysis Algorithm (취약성 분석 알고리즘을 이용한 학습자 중심의 코스 스케쥴링 멀티 에이전트 시스템의 설계)

  • Kim, Tae-Seog;Lee, Jong-Hee;Lee, Keun-Wang;Oh, Hae-Seok
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.517-522
    • /
    • 2001
  • The appearance of web technology has accelerated a role of the development of the multimedia technology, the computer communication technology and the multimedia application contents. And serveral researches of WBI (Web-based Instruction) system have combined the technology of the digital library and LOD. Recently WBI (Web-based Instruction) model which is based on web has been proposed in the part of the new activity model of teaching-learning. And the demand of the customized coursewares which is required from the learners is increased, the needs of the efficient and automated education agents in the web-based instruction are recognized. But many education systems that had been studied recently did not service fluently the courses which learners had been wanting and could not provide the way for the learners to study the learning weakness which is observed in the continuous feedback of the course. In this paper we propose "Design of Multi-agent System for Course Scheduling of Learner-oriented using Weakness Analysis Algorithm". First proposed system monitors learner's behaviors constantly, evaluates them, and calculates his accomplishment. From this accomplishment the multi-agent schedules the suitable course for the learner. And the learner achieves a active and complete learning from the repeated and suitable course.le course.

  • PDF

A Study on the Time-Sectional Analysis of Apartment Housing related research in Korea (국내 아파트 관련 연구의 연구주제 시계열 분석)

  • Kim, Tae-Sok;Park, Jong-Mo;Park, Eu-Gene;Han, Dong-Suk
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.3
    • /
    • pp.45-52
    • /
    • 2018
  • Currently, apartments have become an important research subject for the overall area of politics, economics, and culture as well as urban architectural study. However, there are few analyses of the research trends related to the current interest in the apartment research and prediction of the future changes of an apartment in politics and industry. In this study, the research information related to the apartment has classified, and the changes in the research trends have analyzed. Based on the classified data, the first thesis and dissertation related to the apartment and changes of academic notation have discovered. In addition, future interests and future research directions through Frequency of Appearance, Degree Centrality Analysis, and Betweenness Centrality Analysis of author keywords were predicted. As a result of the analysis, 'Space,' 'Residential Mobility' and 'Apartment Complex' studies were found to be important research topics throughout the entire period. 'Han Gang Apartment,' 'Small Size Apartment,' 'Civic Apartments,' 'Jamsil,' and 'Child' were newly interested topics until 70's era. '(Super) High-rise Apartment,' 'Perception,' 'Jugong Apartment,' 'Housing Environment,' 'Housewife,' 'Apartment Layout,' and 'Busan' were newly interested topics during the 80's and 90's era. 'Apartment Price,' 'Energy,' 'Remodeling,' 'Noise,' 'Resident Satisfaction,' 'Community,' and 'Apartment Lotting-out' were newly interested topics after the year 2000. New concerns for last decade are found to be 'Super High-rise Apartment', 'Remodeling', 'Indoor'(2007), 'Apartment Reconstruction Project', 'Brand', 'AHP', 'Housing Environment'(2008), 'Ventilation'(2009), 'Apartment Lotting-out'(2010), 'Economic Assessment'(2011), 'Cost'(2012), 'Green Building', 'Apartment Sales', 'Law', 'Society'(2013), 'Floor Impact Noise', 'Seoul'(2014), 'Noise'(2015), 'Hedonic Model'(2016). In addition, following research topics are expected to be active in the future: In maturity stage of the research development is going to be 'Apartment Price', 'Space', 'Management of Apartment Housing'; the hedonic model, which is research growth and development stage, is going to be '(Floor Impact) Noise', 'Community', 'Energy.

Digital Transformation: Using D.N.A.(Data, Network, AI) Keywords Generalized DMR Analysis (디지털 전환: D.N.A.(Data, Network, AI) 키워드를 활용한 토픽 모델링)

  • An, Sehwan;Ko, Kangwook;Kim, Youngmin
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.129-152
    • /
    • 2022
  • As a key infrastructure for digital transformation, the spread of data, network, artificial intelligence (D.N.A.) fields and the emergence of promising industries are laying the groundwork for active digital innovation throughout the economy. In this study, by applying the text mining methodology, major topics were derived by using the abstract, publication year, and research field of the study corresponding to the SCIE, SSCI, and A&HCI indexes of the WoS database as input variables. First, main keywords were identified through TF and TF-IDF analysis based on word appearance frequency, and then topic modeling was performed using g-DMR. With the advantage of the topic model that can utilize various types of variables as meta information, it was possible to properly explore the meaning beyond simply deriving a topic. According to the analysis results, topics such as business intelligence, manufacturing production systems, service value creation, telemedicine, and digital education were identified as major research topics in digital transformation. To summarize the results of topic modeling, 1) research on business intelligence has been actively conducted in all areas after COVID-19, and 2) issues such as intelligent manufacturing solutions and metaverses have emerged in the manufacturing field. It has been confirmed that the topic of production systems is receiving attention once again. Finally, 3) Although the topic itself can be viewed separately in terms of technology and service, it was found that it is undesirable to interpret it separately because a number of studies comprehensively deal with various services applied by combining the relevant technologies.