• Title/Summary/Keyword: Active Vibration Measuring System

Search Result 13, Processing Time 0.025 seconds

Active Vibration Measuring Sensor for Nondestructive Test of Electric Power Transmission Line Insulators (송전선로 애자의 비파괴 검사를 위한 능동형 진동 측정센서)

  • Lee, Jae-Kyung;Park, Joon-Young;Cho, Byung-Hak
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.424-430
    • /
    • 2008
  • A new active vibration measurement system in electric power transmission line is presented, using in the nondestructive test. With a permanent magnet and a couple of coils, the system exerts impact force to a test object and in turn picks up the vibration of the object. The natural frequency with the amplitude obtained from the system are used as a basis for the detection of defects in the object. The system is controlled by an electronic device designed to facilitate the fully automated testing process with consistent repeatability and reliability which are essential to the nondestructive test. The system is expected to be applied to the wide area of defect detection including the classification of mechanical parts in production and inspection processes.

A Design of Active Vibration Control System Using Electromagnetic Actuators (전자기 액츄에이터를 이용한 진동제어시스템)

  • Lee, Joo-Hoon;Jeon, Jeong-Woo;Caraiani, Mitica;Kang, Dong-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.936-939
    • /
    • 2006
  • The pneumatic isolator is widely adopted for anti-vibration of precision measuring and manufacturing equipments. But, when the precision demand on anti-vibration is extreme or the load is moving, the performance of anti-vibration can not meet satisfaction. In these cases, as a complementary, active vibration suppression system can be added for advanced performance. In this paper, an active control system is presented, which uses electromagnetic actuators for vibration suppression. The anti-vibration characteristic of pneumatic isolator is analyzed for system modeling and actuator specifying. The modeling and the 3D dynamic simulation is performed for control system design. For the electromagnetic actuator design, the magnetic flex density and the current-force characteristic analysis are achieved.

  • PDF

Beam-rotating machinery system active vibration control using a fuzzy input estimation method and LQG control technique combination

  • Lee, Ming-Hui
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.15-31
    • /
    • 2012
  • This study proposes an active control method to suppress beam-rotating machinery system vibrations. The present control method is a combination of the fuzzy input estimation method (FIEM) and linear quadratic Gaussian problem (LQG) algorithms. The FIEM can estimate the unknown input and optimal states by measuring the dynamic displacement, the optimal estimated states into the feedback control; thereby obtaining the optimal control force for a random linear system. Active vibration control of a beam-rotating machinery system is performed to verify the feasibility and effectiveness of the proposed algorithm. The simulation results demonstrate that the proposed method can suppress vibrations in a beam-machine system more efficiently than the conventional LQG method.

Active Vibration Suppression of a Flexible Structure Using Sliding Mode Control

  • Itik Mehmet;Salamci Metin U.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1149-1158
    • /
    • 2006
  • In this paper, sliding mode control (SMC) is designed and applied to an elastic structure to suppress some of its vibration modes. The system is an elastic beam clamped on one end and the designed controller uses only the deflection measurement of the free end. The infinite dimensional mathematical model of the beam is reduced to an ordinary differential equation set to represent the behavior of required modes. Since the states of the finite dimensional model are not physically measurable quantities, an observer is designed to estimate these states by measuring the tip deflection of the beam. The performance of the observer is important because the observed states are used in the SMC design. In this study, by using the output information, an observer is designed and tested to estimate the states of the finite dimensional model of the beam. Then the designed SMC is applied to the experimental beam system which gives satisfactory suppressed vibrations.

Active Damping Control of an Air Bearing Stage with Magnetic Preloads (능동 자기예압 공기베어링 스테이지의 진동감쇠 제어)

  • Ro, Seung-Kook;Kim, Soohyun;Kwak, Yoonkeun;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1321-1325
    • /
    • 2013
  • In this paper, we proposed an air bearing stage with active magnetic preloads in vertical directions compensating motion errors and attenuating vibrations to improve dynamic characteristics. This preloaded design gives simpler configuration of the stage, and active control of preload can be used for compensating motion errors by feedforward method. To improve dynamic characteristics, vibration of the table is monitored by an accelerometer, and controlled by a DSP based digital controller with integrator and band pass filters for suppressing roll and pitch vibration modes. The modes were evaluated by measuring frequency response functions, and compared with compensated responses. This showed effective results for suppressing poorly damped regenerative vibration of air bearings.

Sliding Mode Control for Pneumatic Active Suspension Systems of a One-wheel Car Model

  • Yoshimura, Toshio;Kimura, Ryota
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1152-1157
    • /
    • 2005
  • This paper is concerned with the construction of an improved sliding mode control for the active suspension system of a one-wheel car model subject to the excitation from a road profile. The active control is composed of the equivalent and the switching controls where an improved sliding surface is proposed. The active control force is generated by operating a pneumatic actuator due to the control signal that constructed by measuring the state variables of the car model and by estimating the excitation from the road profile using the VSS observer. The experimental result indicates that the proposed active suspension system is relatively effective in the vibration suppression of the car model.

  • PDF

Design of an Active Damper for Suppressing Vibrations of Inspection and Measurement Devices (검사 및 측정 장비 진동제어를 위한 능동댐퍼 설계)

  • Noh, Ho Chul;Ro, Seung Hoon;Ryu, Young Chan;Yi, Il Hwan;Jung, Geum Sub;Kim, Young Jo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • Inspection and measurement of surface quality is one of the most critical processes for manufacturing products such as semiconductor wafers, sapphire substrates, and display panels. The vibrations of the inspection and measurement devices are supposed to be the most dominant factors for severe measurement errors and longer measuring time. In this study, dynamic characteristics of an inspection and measurement device are analyzed through frequency response experiment and computer simulation to obtain parameters such as frequencies, magnitudes, mode shapes, and periods of vibrations. And then an active damper which consists of sensor, interface board, and actuator is designed based on the parameters to formulate the most effective reaction signal to suppress the vibrations which is generated by an interface board, and provided by an actuator. If the vibrations are measured by the sensor, the active damper immediately generates and provides the corresponding reaction signal to inspection and measurement device. The result shows that the active damper can suppress structural vibrations effectively and reduce measuring time of the device and enhance the productivity.

Test of Static Characteristic of a Voice-coil type LOA (보이스 코일형 LOA의 정상특성 실험)

  • Jang, S.M.;Jeong, H.I.;Jeong, S.S.;Kim, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.294-296
    • /
    • 1997
  • LOA(Linear Oscillating Actuator) is composed of a voice coil type mover and permanent magnets. we have applied LOA to the active vibration control system to supress structual vibration. In this paper, the static test of the voice coil type LOA is treated. The thrust developed by LOA is calculated by measuring stroke.

  • PDF

Control of a Three-pole Hybrid Active Magnetic Bearing using Redundant Coordinates (잉여좌표계를 이용한 3-폴 하이브리드형 자기베어링 제어)

  • Park, Sang-Hyun;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1375-1381
    • /
    • 2007
  • In this paper, we propose a linear modeling and identical PD controller design scheme for the three-pole hybrid-type AMB recently developed in the laboratory, which consists of three permanent magnets, providing bias flux, three Hall diodes, measuring rotor displacements, and ring type permanent magnet bearing, stabilizing in axial and tilting directions. Along the three physical coordinates formed by three poles, we introduce the redundant coordinate system and three identical decoupled controllers to construct linear model. The experiments are also carried out in order to verify the effectiveness of proposed controller in stabilizing the transient and steady state response of rotor.

  • PDF

Transverse Vibration Control of an Axially Moving String by Velocity Boundary Control (속도경계제어를 이용한 축방향 주행 현의 횡진동 제어)

  • Ryu, Du-Hyeon;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.135-144
    • /
    • 2001
  • In this study, the time varying boundary control using the right boundary transverse motion is suggested to stabilize the transverse vibration of an axially moving string on the basis of the energy flux between the moving string and the boundaries. The effectiveness of the active velocity boundary control is showed through the FDM simulation results. Sliding mode control is adopted in order to achieve velocity tracking control of the time varying right boundary to dissipate vibration energy of the string effectively. Optical sensor system for measuring the transverse vibration of an axially moving string is developed, and the angle of the incident wave to the right boundary, which is the input of the velocity boundary controller, is obtained. Experimental research is carried out to examine the validity and the performance of the transverse vibration control using the suggested velocity right boundary control scheme.