• Title/Summary/Keyword: Active Switch

Search Result 315, Processing Time 0.03 seconds

Comparison of Approval Process for Nonprescription Drugs in Different Countries (비처방의약품 허가 제도의 국가별 비교 연구 및 고찰)

  • Kim, Joo Hee;Yee, Jeong;Lee, Gwan Yung;Lee, Kyung Eun;Gwak, Hye Sun
    • Korean Journal of Clinical Pharmacy
    • /
    • v.28 no.4
    • /
    • pp.263-272
    • /
    • 2018
  • Nonprescription drugs have become increasingly important in Korean healthcare. By leveraging lower-cost drugs and reducing expenditure associated with fewer physician visits, the nonprescription segment can deliver tremendous value to individual consumers and the Korean healthcare system. Many countries have provided simpler and more rapid routes to market entry for qualifying nonprescription drug products, using the established data on drug safety and efficacy, as well as public and professional opinion. In US, the FDA waived the pre-approval process for over-the-counter (OTC) drugs marketed through the OTC Monograph Process. In Australia and Canada, different OTC product application levels are defined, with a reduced level of assessment required when the risks to consumers are considered low. Japan established a new OTC evaluation system in 2014 to facilitate the Rx-to-OTC switch process. The legislative framework for medicinal products in the European Union allows for drugs to be approved with reference to appropriate bibliographic data for old active substances with well-established uses. Through a comparison of the regulatory framework and the requirements for nonprescription approval process in different countries, several ways to improve regulatory practice for the evaluation of nonprescription drugs in Korea have been suggested.

Multi-Level Inverter Circuit Analysis and Weight Reduction Analysis to Stratospheric Drones (성층권 드론에 적용할 멀티레벨 인버터 회로 분석 및 경량화 분석)

  • Kwang-Bok Hwang;Hee-Mun Park;Hyang-Sig Jun;Jung-Hwan Lee;Jin-Hyun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.953-965
    • /
    • 2023
  • The stratospheric drones are developed to perform missions such as weather observation, communication relay, surveillance, and reconnaissance at 18km to 20km, where climate change is minimal and there is no worry about a collision with aircraft. It uses solar panels for daytime flights and energy stored in batteries for night flights, providing many advantages over existing satellites. The electrical and power systems essential for stratospheric drone flight must ensure reliability, efficiency, and lightness by selecting the optimal circuit topology. Therefore, it is necessary to analyze the circuit topology of various types of multi-level inverters with high redundancy that can ensure the reliability and efficiency of the motor driving power required for stable long-term flight of stratospheric drones. By quantifying the switch element voltage drop and the number and weight of inverter components for each topology, we evaluate efficiency and lightness and propose the most suitable circuit topology for stratospheric drones.

Polymorphisms in RAS Guanyl-releasing Protein 3 are Associated with Chronic Liver Disease and Hepatocellular Carcinoma in a Korean Population

  • Oh, Ah-Reum;Lee, Seung-Ku;Kim, Min-Ho;Cheong, Jae-Youn;Cho, Sung-Won;Yang, Kap-Seok;Kwack, Kyu-Bum
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.181-191
    • /
    • 2008
  • RAS guanyl-releasing protein 3 (RasGRP3), a member of the Ras subfamily of GTPases, functions as a guanosine triphosphate (GTP)/guanosine diphosphate (GDP)-regulated switch that cycles between inactive GDP- and active GTP-bound states during signal transduction. Various growth factors enhance hepatocellular carcinoma (HCC) proliferation via activation of the Ras/Raf-1/extracellular signal-regulated kinase (ERK) pathway, which depends on RasGRP3 activation. We investigated the relationship between polymorphisms in RasGRP3 and progression of hepatitis B virus (HBV)-infected HCC in a Korean population. Nineteen RasGRP3 SNPs were genotyped in 206 patients with chronic liver disease (CLD) and 86 patients with HCC. Our results revealed that the T allele of the rs7597095 SNP and the C allele of the rs7592762 SNP increased susceptibility to HCC (OR=1.55, p=0.04 and OR=1.81${\sim}$2.61, p=0.01${\sim}$0.03, respectively). Moreover, patients who possessed the haplotype (ht) 1 (A-T-C-G) or diplotype (dt) 1 (ht1/ht1) variations had increased susceptibility to HCC (OR=1.79${\sim}$2.78, p=0.01${\sim}$0.03). In addition, we identified an association between haplotype1 (ht1) and the age of HCC onset; the age of HCC onset are earlier in ht1 +/+ than ht1 +/- or ht1 -/- (HR=0.42${\sim}$0.66, p=0.006${\sim}$0.015). Thus, our data suggest that RasGRP3 SNPs are significantly associated with an increased risk of developing HCC.

Development and Performance Compensation of the Extremely Stable Transceiver System for High Resolution Wideband Active Phased Array Synthetic Aperture Radar (고해상도 능동 위상 배열 영상 레이더를 위한 고안정 송수신 시스템 개발 및 성능 보정 연구)

  • Sung, Jin-Bong;Kim, Se-Young;Lee, Jong-Hwan;Jeon, Byeong-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.573-582
    • /
    • 2010
  • In this paper, X-band transceiver for high resolution wideband SAR systems is designed and fabricated. Also as a technique for enhancing the performance, error compensation algorithm is presented. The transceiver for SAR system is composed of transmitter, receiver, switch matrix and frequency generator. The receiver especially has 2 channel mono-pulse structure for ground moving target indication. The transceiver is able to provide the deramping signal for high resolution mode and select the receive bandwidth for receiving according to the operation mode. The transceiver had over 300 MHz bandwidth in X-band and 13.3 dBm output power which is appropriate to drive the T/R module. The receiver gain and noise figure was 39 dB and 3.96 dB respectively. The receive dynamic range was 30 dB and amplitude imbalance and phase imbalance of I/Q channel was ${\pm}$0.38 dBm and ${\pm}$3.47 degree respectively. The transceiver meets the required electrical performances through the individual tests. This paper shows the pulse error term depending on SAR performance was analyzed and range IRF was enhanced by applying the compensation technique.

Working Mechanism of Peroxiredoxins (Prxs) and Sulphiredoxin1 (Srx1) in Arabidopsis thaliana (애기장대 peroxiredoxins (Prxs)과 sulphiredoxin1 (Srx1)의 작용기작)

  • Kim, Min-Gab;Su'udi, Mukhamad;Park, Sang-Ryeol;Hwang, Duk-Ju;Bae, Shin-Chul
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1777-1783
    • /
    • 2010
  • Plants generate reactive oxygen species (ROS) as a by-product of normal aerobic metabolism or when exposed to a variety of stress conditions, which can cause widespread damage to biological macromolecules. To protect themselves from oxidative stress, plant cells are equipped with a wide range of antioxidant proteins. However, the detailed reaction mechanisms of these are still unknown. Peroxiredoxins (Prxs) are ubiquitous thiol-containing antioxidants that reduce hydrogen peroxide with an N-terminal cysteine. The active-site cysteine of peroxiredoxins is selectively oxidized to cysteine sulfinic acid during catalysis, which leads to inactivation of peroxidase activity. This oxidation was thought to be irreversible. Recently identified small protein sulphiredoxin (Srx1), which is conserved in higher eukaryotes, reduces cysteine.sulphinic acid in yeast peroxiredoxin. Srx1 is highly induced by $H_2O_2$-treatment and the deletion of its gene causes decreased yeast tolerance to $H_2O_2$, which suggest its involvement in the metabolism of oxidants. Moreover, Srx1 is required for heat shock and oxidative stress induced functional, as well as conformational switch of yeast cytosolic peroxiredoxins. This change enhances protein stability and peroxidase activity, indicating that Srx1 plays a crucial role in peroxiredoxin stability and its regulation mechanism. Thus, the understanding of the molecular basis of Srx1 and its regulation is critical for revealing the mechanism of peroxiredoxin action. We postulate here that Srx1 is involved in dealing with oxidative stress via controlling peroxiredoxin recycling in Arabidopsis. This review article thus will be describing the functions of Prxs and Srx in Arabidopsis thaliana. There will be a special focus on the possible role of Srx1 in interacting with and reducing hyperoxidized Cys-sulphenic acid of Prxs.

Optical thyristor operating at 1.55 μm (장파장에서 동작하는 Optical Thyristor)

  • Kim, Doo-Gun;Kim, Hyung-Soo;Jung, Sung-Jae;Choi, Young-Wan;Lee, Seok;Woo, Deok-Ha;Jhon, Young-Min;Yu, Byung-Geel
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.146-150
    • /
    • 2002
  • 1.55${\mu}{\textrm}{m}$ PnpN optical thyristor as a smart optical switch has potential applications in advanced optical communication systems. PnpP optical thyristors operating at 1.55${\mu}{\textrm}{m}$ are proposed and fabricated for the first time. In the optical thyristors, we employ InGaAs/InP multiple quantum well (MQW) for the active n- and p-layers. The thyristors show sufficiently nonlinear s-shape I-V characteristics and spontaneous emission. In the OFF-state, the device has a high-impedance up to switching voltage of 4.03(V). On the other hand, it has low-impedance and emits spontaneous light as a light-emitting diode in the ON-state voltage of 1.77(V), and switching voltage is changed under several light input conditions. It can be used as a header processor in optical asynchronous transfer mode (ATM), as a hard limiter in optical code division multiple access (CDMA) and as a wavelength converter in optical WDM systems.

A Study on The Design of China DSRC System SoC (중국형 DSRC 시스템 SoC 설계에 대한 연구)

  • Shin, Dae-Kyo;Choi, Jong-Chan;Lim, Ki-Taeg;Lee, Je-Hyun
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • The final goal of ITS and ETC will be to improve the traffic efficiency and mobile safety without new road construction. DSRC system is emerging nowadays as a solution of them. China DSRC standard which was released in May 2007 has low bit rate, short message and simple MAC control. The DSRC system users want a long lifetime over 1 year with just one battery. In this paper, we propose the SoC of very low power consumption architecture. Several digital logic concept and analog power control logics were used for very low power consumption. The SoC operation mode and clock speed, operation voltage range, wakeup signal detector, analog comparator and Internal Voltage Regulator & External Power Switch were designed. We confirmed that the SoC power consumption is under 8.5mA@20Mhz, 0.9mA@1Mhz in active mode, and under 5uA in power down mode, by computer simulation. The design of SoC was finished on Aug. 2008, and fabricated on Nov. 2008 with $0.18{\mu}m$ CMOS process.

Ebb-and-Flow of Macroautophagy and Chaperone-Mediated Autophagy in Raji Cells Induced by Starvation and Arsenic Trioxide

  • Li, Cai-Li;Wei, Hu-Lai;Chen, Jing;Wang, Bei;Xie, Bei;Fan, Lin-Lan;Li, Lin-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5715-5719
    • /
    • 2014
  • Autophagy is crucial in the maintenance of homeostasis and regenerated energy of mammalian cells. Macroautophagy and chaperone-mediated autophagy(CMA) are the two best-identified pathways. Recent research has found that in normal cells, decline of macroautophagy is appropriately parallel with activation of CMA. However, whether it is also true in cancer cells has been poorly studied. Here we focused on cross-talk and conversion between macroautophagy and CMA in cultured Burkitt lymphoma Raji cells when facing serum deprivation and exposure to a toxic compound, arsenic trioxide. The results showed that both macroautophagy and CMA were activated sequentially instead of simultaneously in starvation-induced Raji cells, and macroautophagy was quickly activated and peaked during the first hours of nutrition deprivation, and then gradually decreased to near baseline. With nutrient deprivation persisted, CMA progressively increased along with the decline of macroautophagy. On the other hand, in arsenic trioxide-treated Raji cells, macroautophagy activity was also significantly increased, but CMA activity was not rapidly enhanced until macroautophagy was inhibited by 3-methyladenine, an inhibitor. Together, we conclude that cancer cells exhibit differential responses to diverse stressor-induced damage by autophagy. The sequential switch of the first-aider macroautophagy to the homeostasis-stabilizer CMA, whether active or passive, might be conducive to the adaption of cancer cells to miscellaneous intracellular or extracellular stressors. These findings must be helpful to understand the characteristics, compensatory mechanisms and answer modes of different autophagic pathways in cancer cells, which might be very important and promising to the development of potential targeting interventions for cancer therapies via regulation of autophagic pathways.

Association of A/T Rich Microsatellites with Responses to Artificial Selection for Larval Developmental Duration in the Silkworm Bombyx mori

  • Pradeep, Appukuttan Nair Retnabhavan;Awasthi, Arvind Kumar;Urs, Raje Siddaraje
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.467-478
    • /
    • 2008
  • Simple sequence repeats (SSRs) and interSSR (ISSR) marker systems were used in this study to reveal genetic changes induced by artificial selection for short/long larval duration in the tropical strain Nistari of the silkworm Bombyx mori. Artificial selection separated longer larval duration (LLD) ($29.428{\pm}0.723days$) and shorter larval duration (SLD) ($22.573{\pm}0.839days$) lines from a base, inbred population of Nistari (larval span of $23.143{\pm}0.35days$). SSR polymorphism was observed between the LLD and SLD lines at one microsatellite locus, Bmsat106 ($CA_7$) and at two loci of 1074 bp and 823 bp generated with the ISSR primer UBC873. Each of these loci was present only in the LLD line. The loci segregated in the third generation of selection and were fixed in opposite directions. In the $F_2$ generation of the $LLD{\times}SLD$ lines, the alleles of Bmsat106 and $UBC873_{1074bp}$ segregated in a 1:1 ratio and the loci were present only in the LLD individuals. $UBC873_{823bp}$ was homozygous. Single factor ANOVA showed a significant association between the segregating loci and longer larval duration. Together, the two alleles contributed to an 18% increase in larval duration. The nucleotide sequences of the $UBC873_{1074bp}$ and $UBC873_{823bp}$ loci had 67% A/T content and consisted of direct, reverse, complementary and palindromic repeats. The repeats appeared to be "nested" (59%) in larger repeats or as clustered elements adjacent to other repeats. Of 203 microsatellites identified, dinucleotides (67.8%) predominated and were rich in A/T and T/A motifs. The sequences of the $UBC873_{1074bp}$ and $UBC873_{823bp}$ loci showed similarity (E = 0.0) to contigs located in Scaffold 010774 and Scaffold 000139, respectively, of the B. mori genome. BLASTN analysis of the $UBC873_{1074bp}$ sequence showed significant homology of (nt.) 45-122 with upstream region of three exons from Bombyx. The complete sequence of this locus showed ~49% nucleotide conservation with transposon 412 of Drosophila melanogaster and the Ikirara insertions of Anopheles gambiae. The A + T richness and lack of coding potential of these small loci, and their absence in the SLD line, reflect the active process of genetic change associated with the switch to short larval duration as an adaptation to the tropics.

Fabrication and characterization of $WSi_2$ nanocrystals memory device with $SiO_2$ / $HfO_2$ / $Al_2O_3$ tunnel layer

  • Lee, Hyo-Jun;Lee, Dong-Uk;Kim, Eun-Kyu;Son, Jung-Woo;Cho, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.134-134
    • /
    • 2011
  • High-k dielectric materials such as $HfO_2$, $ZrO_2$ and $Al_2O_3$ increase gate capacitance and reduce gate leakage current in MOSFET structures. This behavior suggests that high-k materials will be promise candidates to substitute as a tunnel barrier. Furthermore, stack structure of low-k and high-k tunnel barrier named variable oxide thickness (VARIOT) is more efficient.[1] In this study, we fabricated the $WSi_2$ nanocrystals nonvolatile memory device with $SiO_2/HfO_2/Al_2O_3$ tunnel layer. The $WSi_2$ nano-floating gate capacitors were fabricated on p-type Si (100) wafers. After wafer cleaning, the phosphorus in-situ doped poly-Si layer with a thickness of 100 nm was deposited on isolated active region to confine source and drain. Then, on the gate region defined by using reactive ion etching, the barrier engineered multi-stack tunnel layers of $SiO_2/HfO_2/Al_2O_3$ (2 nm/1 nm/3 nm) were deposited the gate region on Si substrate by using atomic layer deposition. To fabricate $WSi_2$ nanocrystals, the ultrathin $WSi_2$ film with a thickness of 3-4 nm was deposited on the multi-stack tunnel layer by using direct current magnetron sputtering system [2]. Subsequently, the first post annealing process was carried out at $900^{\circ}C$ for 1 min by using rapid thermal annealing system in nitrogen gas ambient. The 15-nm-thick $SiO_2$ control layer was deposited by using ultra-high vacuum magnetron sputtering. For $SiO_2$ layer density, the second post annealing process was carried out at $900^{\circ}C$ for 30 seconds by using rapid thermal annealing system in nitrogen gas ambient. The aluminum gate electrodes of 200-nm thickness were formed by thermal evaporation. The electrical properties of devices were measured by using a HP 4156A precision semiconductor parameter analyzer with HP 41501A pulse generator, an Agillent 81104A 80MHz pulse/pattern generator and an Agillent E5250A low leakage switch mainframe. We will discuss the electrical properties for application next generation non-volatile memory device.

  • PDF