• Title/Summary/Keyword: Active Sensors

Search Result 539, Processing Time 0.03 seconds

상지 편마비 환자의 능동형 재활운동을 위한 양측성 훈련 인터페이스 기법에 대한 연구 (Study on Bilateral Exercise Interface Techniques for Active Rehabilitation of the Upper Limb Hemiplegia)

  • 엄수홍;송기선;장문석;이응혁
    • 제어로봇시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.510-517
    • /
    • 2015
  • For the self-directed rehabilitation of upper extremity hemiplegia patients, in this paper we propose an interface method capable of doing bilateral exercises in rehabilitation robotics. This is a method for estimating information of movements from the unaffected-side, and projects it to the affected-side in order. That the affected-side is followed the movements of the unaffected-side. For estimation of the unaffected-side movements information, gyro sensor data and acceleration sensor data were fused. In order to improve the measurement error in data fusion, a HDR filter and a complementary filter were applied. Estimated motion information is derived the one side of the drive input of rehabilitation robot. In order to validate the proposed method, experimental equipment is designed to be similar to the body's joints. The verification was performed by comparing the estimation angle data from inertial sensors and the encoder data which were attached to the mechanism.

Fabrication of PVDF Structures by Near Field Electrospinning

  • 김성욱;지승묵;여종석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.423.1-423.1
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) has drawn much attention due to its many advantages. PVDF shows high mechanical strength and flexibility, thermal stability, and good piezoelectricity enabling its application to various fields such as sensors, actuators, and energy transducers. Further studies have been conducted on PVDF in the form of thin films. The thin films exhibit different ionic conductivity according to the number of pores within the film, letting these films to be applied as electrolytes or separators of batteries. Porous PVDF membranes are also easily processed, usually made by using electrospinning. However, a large portion of researches were conducted using PVDF membranes produced by far field electrospinning, which is not a well-controlled experimental method. In this paper, we use near field electrospinning (NFES) process for more controlled, small-scaled, mesh type PVDF structures of nano to micro fibers fabricated by controlling process parameters and investigate the properties of such membranous structures. These membranes vary according to geometrical shape, pore density, and fiber thickness. We then measured the mechanical strength and piezoelectric characteristic of the structures. With various geometries in the fiber structures and various scales in the fibers, these types of structures can potentially lead to broader applications for stretchable electronics and dielectric electro active polymers.

  • PDF

Wide Dynamic Range CMOS Image Sensor with Adjustable Sensitivity Using Cascode MOSFET and Inverter

  • Seong, Donghyun;Choi, Byoung-Soo;Kim, Sang-Hwan;Lee, Jimin;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제27권3호
    • /
    • pp.160-164
    • /
    • 2018
  • In this paper, a wide dynamic range complementary metal-oxide-semiconductor (CMOS) image sensor with the adjustable sensitivity by using cascode metal-oxide-semiconductor field-effect transistor (MOSFET) and inverter is proposed. The characteristics of the CMOS image sensor were analyzed through experimental results. The proposed active pixel sensor consists of eight transistors operated under various light intensity conditions. The cascode MOSFET is operated as the constant current source. The current generated from the cascode MOSFET varies with the light intensity. The proposed CMOS image sensor has wide dynamic range under the high illumination owing to logarithmic response to the light intensity. In the proposed active pixel sensor, a CMOS inverter is added. The role of the CMOS inverter is to determine either the conventional mode or the wide dynamic range mode. The cascode MOSFET let the current flow the current if the CMOS inverter is turned on. The number of pixels is $140(H){\times}180(V)$ and the CMOS image sensor architecture is composed of a pixel array, multiplexer (MUX), shift registers, and biasing circuits. The sensor was fabricated using $0.35{\mu}m$ 2-poly 4-metal CMOS standard process.

셀룰로오스 EAPap 용 은잉크 제조 및 잉크젯 프린팅 (Inkjet Printing of Customized Silver Ink for Cellulose Electro Active Paper)

  • 문성철;;;;김재환
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.737-742
    • /
    • 2014
  • This paper reports a customized silver ink and its inkjet printing process on a cellulose electro-active paper (EAPap). To synthesize a silver ink, silver nanoparticle is synthesized from silver nitrate, polyvinylpyrrolidone and ethylene glycol, followed by adding a viscosifier, hydroxyethyl-cellulose solution, and a surfactant, diethylene glycol. The silver ink is used in an inkjet printer (Fujifilm Dimatix DMP-2800 series) to print silver electrodes on cellulose EAPap. After printing, the electrodes are heat treated at $200^{\circ}C$. The sintered electrodes show that the thickness of the electrodes linearly increases as the number of printing layers increases. The electrical resistivity of the printed electrodes is $23.5{\mu}{\Omega}-cm$. This customized ink can be used in inkjet printer to print complex electrode patterns on cellulose EAPap to fabricate flexible smart actuators, flexible electronics and sensors.

SOI 핸들 웨이퍼에 고정된 광다이오드를 가진 SOI CMOS 이미지 센서 (SOI CMOS image sensor with pinned photodiode on handle wafer)

  • 조용수;최시영
    • 센서학회지
    • /
    • 제15권5호
    • /
    • pp.341-346
    • /
    • 2006
  • We have fabricated SOI CMOS active pixel image sensor with the pinned photodiode on handle wafer in order to reduce dark currents and improve spectral response. The structure of the active pixel image sensor is 4 transistors APS which consists of a reset and source follower transistor on seed wafer, and is comprised of the photodiode, transfer gate, and floating diffusion on handle wafer. The source of dark current caused by the interface traps located on the surface of a photodiode is able to be eliminated, as we apply the pinned photodiode. The source of dark currents between shallow trench isolation and the depletion region of a photodiode can be also eliminated by the planner process of the hybrid bulk/SOI structure. The photodiode could be optimized for better spectral response because the process of a photodiode on handle wafer is independent of that of transistors on seed wafer. The dark current was about 6 pA at 3.3 V of floating diffusion voltage in the case of transfer gate TX = 0 V and TX=3.3 V, respectively. The spectral response of the pinned photodiode was observed flat in the wavelength range from green to red.

유비쿼터스 모바일 로봇의 강인한 위치 추정 기법 (Robust Positioning-Sensing for n Ubiquitous Mobile Robot)

  • 최효식;황진아;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1139-1145
    • /
    • 2008
  • A robust position sensing system is proposed in this paper for a ubiquitous mobile robot which moves indoors as well as outdoors. The Differential GPS (DGPS) which has a position estimation error of less than 5 m is a general solution when the mobile robot is moving outdoor, while an active beacon system (ABS) with embedded ultrasonic sensors is reliable as an indoor positioning system. The switching from the outdoor to indoor or vice versa causes unstable measurements on account of the reference coordinates and algorithm changes. To minimize the switching time in the position estimation and to stabilize the measurement, a robust position sensing system is proposed. In the system, to minimize the switching delay, the door positions are stored and updated in a database. Using the database, the approaching status of the mobile robot from indoor to outdoor or vice versa has been checked and the switching conditions are prepared before the mobile robot actually moves out or moves into the door. The reliability and accuracy of the robust positioning system based on DGPS and ABS are verified and demonstrated through the real experiments using a mobile robot prepared for this research.

적응 Feedforward를 이용한 자기베어링 고속 주축계의 전기적 런아웃 제어 (Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method)

  • 노승국;경진호;박종권
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.57-63
    • /
    • 2002
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensor fur control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking and stability performances numerically with established frequency response function. The tested grinding spindle system is manufactured with a 5.5 ㎾ internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15 ~ 30 ${\mu}{\textrm}{m}$ of electrical runout. According to the experimental analysis, the error signal in radial bearings is reduced to less than 5 ${\mu}{\textrm}{m}$ when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and vibration of the spindle base is also reduced about same frequency.

System Modeling and Robust Control of an AMB Spindle : Part I Modeling and Validation for Robust Control

  • Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1844-1854
    • /
    • 2003
  • This paper discusses details of modeling and robust control of an AMB (active magnetic bearing) spindle, and part I presents a modeling and validation process of the AMB spindle. There are many components in AMB spindle : electromagnetic actuator, sensor, rotor, power amplifier and digital controller. If each component is carefully modeled and evaluated, the components have tight structured uncertainty bounds and achievable performance of the system increases. However, since some unknown dynamics may exist and the augmented plant could show some discrepancy with the real plant, the validation of the augmented plant is needed through measuring overall frequency responses of the actual plant. In addition, it is necessary to combine several components and identify them with a reduced order model. First, all components of the AMB spindle are carefully modeled and identified based on experimental data, which also render valuable information in quantifying structured uncertainties. Since sensors, power amplifiers and discretization dynamics can be considered as time delay components, such dynamics are combined and identified with a reduced order. Then, frequency responses of the open-loop plant are measured through closed-loop experiments to validate the augmented plant. The whole modeling process gives an accurate nominal model of a low order for the robust control design.

무선 센서 네트워크에서 에너지 효율성을 고려한 시간 동기 알고리즘 (EETS : Energy- Efficient Time Synchronization for Wireless Sensor Networks)

  • 김수중;홍성화;엄두섭
    • 전기전자학회논문지
    • /
    • 제11권4호
    • /
    • pp.322-330
    • /
    • 2007
  • Recent advances in wireless networks and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low power sensors and actuators, In large-scale networks, lots of timing-synchronization protocols already exist (such as NTP, GPS), In ad-hoc networks, especially wireless sensor networks, it is hard to synchronize all nodes in networks because it has no infrastructure. In addition, sensor nodes have low-power CPU (it cannot perform the complex computation), low batteries, and even they have to have active and inactive section by periods. Therefore, new approach to time synchronization is needed for wireless sensor networks, In this paper, I propose Energy-Efficient Time Synchronization (EETS) protocol providing network-wide time synchronization in wireless sensor networks, The algorithm is organized two phase, In first phase, I make a hierarchical tree with sensor nodes by broadcasting "Level Discovery" packet. In second phase, I synchronize them by exchanging time stamp packets, And I also consider send time, access time and propagation time. I have shown the performance of EETS comparing Timing-sync Protocol for Sensor Networks (TPSN) and Reference Broadcast Synchronization (RBS) about energy efficiency and time synchronization accuracy using NESLsim.

  • PDF

Efficient Tracking of a Moving Object using Optimal Representative Blocks

  • Kim, Wan-Cheol;Hwang, Cheol-Ho;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.495-502
    • /
    • 2003
  • This paper focuses on the implementation of an efficient tracking method of a moving object using optimal representative blocks by way of a pan-tilt camera. The key idea is derived from the fact that when the image size of a moving object is shrunk in an image frame according to the distance between the mobile robot camera and the object in motion, the tracking performance of a moving object can be improved by reducing the size of representative blocks according to the object image size. Motion estimations using Edge Detection (ED) and Block-Matching Algorithm (BMA) are regularly employed to track objects by vision sensors. However, these methods often neglect the real-time vision data since these schemes suffer from heavy computational load. In this paper, a representative block able to significantly reduce the amount of data to be computed, is defined and optimized by changing the size of representative blocks according to the size of the object in the image frame in order to improve tracking performance. The proposed algorithm is verified experimentally by using a two degree-of- freedom active camera mounted on a mobile robot.