• Title/Summary/Keyword: Active Sensors

Search Result 542, Processing Time 0.025 seconds

Active Structural Acoustic Control for Reduction of Radiated Sound from Structure (구조물에서 방사되는 소음을 저감하기 위한 능동구조음향제어)

  • O, Jae-Eung;Hong, Jin-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1410-1415
    • /
    • 2001
  • Active control of sound radiation from a vibrating rectangular plate by a steady-state harmonic point force disturbance is experimentally studied. Structural excitation is achieved by two piezoceramic actuators mounted on the panel. Two accelerometers are implemented as error sensors. Estimated radiated sound signals using vibro-acoustic path transfer function are used as error signals. The vibro-acoustic path transfer function represents system between accelerometers and microphones. The approach is based on a multi-channel filtered-x LMS algorithm. The results shows that attenuation of sound levels of 11dB, 10dB is achieved.

Comparisons of smart damping treatments based on FEM modeling of electromechanical impedance

  • Providakis, C.P.;Kontoni, D.P.N.;Voutetaki, M.E.;Stavroulaki, M.E.
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.35-46
    • /
    • 2008
  • In this paper the authors address the problem of comparing two different smart damping techniques using the numerical modelling of the electro-mechanical impedance for plate structures partially treated with active constrained layer damping treatments. The paper summarizes the modelling procedures including a finite element formulation capable of accounting for the observed behaviour. The example used is a smart cantilever plate structure containing a viscoelastic material (VEM) layer sandwiched between a piezoelectric constrained layer and the host vibrating plate. Comparisons are made between active constrained layer and active damping only and based on the resonance frequency amplitudes of the electrical admittance numerically evaluated at the surface of the piezoelectric model of the vibrating structure.

Active Noise Cancellation using a Teacher Forced BSS Learning Algorithm

  • Sohn, Jun-Il;Lee, Min-Ho;Lee, Wang-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.224-229
    • /
    • 2004
  • In this paper, we propose a new Active Noise Control (ANC) system using a teacher forced Blind Source Separation (BSS) algorithm. The Blind Source Separation based on the Independent Component Analysis (ICA) separates the desired sound signal from the unwanted noise signal. In the proposed system, the BSS algorithm is used as a preprocessor of ANC system. Also, we develop a teacher forced BSS learning algorithm to enhance the performance of BSS. The teacher signal is obtained from the output signal of the ANC system. Computer experimental results show that the proposed ANC system in conjunction with the BSS algorithm effectively cancels only the ship engine noise signal from the linear and convolved mixtures with human voice.

Analytical Pinning-Voltage Model of a Pinned Photodiode in a CMOS Active Pixel Sensor

  • Lee, Sung-Sik;Nathan, Arokia;Lee, Myung-Lae;Choi, Chang-Auck
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.14-18
    • /
    • 2011
  • An analytical pinning-voltage model of a pinned photodiode has been proposed and derived. The pinning-voltage is calculated using doping profiles based on shallow- and exponential-junction approximations. Therefore, the derived pinning-voltage model is analytically expressed in terms of the process parameters of the implantation. Good agreement between the proposed model and simulated results has been obtained. Consequently, the proposed model can be used to predict the pinning-voltage and related performance of a pinned photodiode in a CMOS active pixel sensor.

Experimental Study on the Vibration Control for Building Structures using LQG Compensator (LQG 보상기를 이용한 건물의 진동제어 실험)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.202-216
    • /
    • 1999
  • To control the motion of building structures under earthquakes their response should be measured first by various sensors and transformed into the control forces using some control algorithms. Of many control algorithms linear quadratic control is widely used as it is easy to implement and analyze. However the algorithms has the disadvantage that it needs the real-time measurements of all state variables(i.e, building's displacements and velocities) which are difficult to achieve for the building structures under earthquakes. Thus the practical algorithms employing output feedback are developed. In this paper LQG algorithm is used for the control of the building model with an active mass driver. The building's acceleration is used to obtain the control gain and the Kalman filter gain. The LQG control strategy is verified with the experimental study on the one-storybuilding model equipped with the active mass driver. This paper demonstrates experimentally the efficacy of the LQG algorithm based on the active mass driver system in reducing the response of seismically excited buildings.

  • PDF

One-Cycle Control Strategy with Active Damping for AC-DC Matrix Converter

  • Liu, Xiao;Zhang, Qingfan;Hou, Dianli
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.778-787
    • /
    • 2014
  • This study presents an input filter resonance mitigation method for an AC-DC matrix converter. This method combines the advantages of the one-cycle control strategy and the active damping technique. Unnecessary sensors are removed, and system cost is reduced by employing the grid-side input currents as feedback to damp out LC resonance. A model that includes the proposed method and the input filter is established with consideration of the delay caused by the actual controller. A zero-pole map is employed to analyze model stability and to investigate virtual resistor parameter design principles. Based on a double closed-loop control scheme, the one-cycle control strategy does not require any complex modulation index control. Thus, this strategy can be more easily implemented than traditional space vector-based methods. Experimental results demonstrate the veracity of theoretical analysis and the feasibility of the proposed approach.

Active Vibration Control of Flexible Cantilever Beam Using Piezoceramic Actuators and PID Controller (압전체 작동기와 PID 제어기를 이용한 유연 외팔보의 능동 전동 제어)

  • Choi, Soo-Young;Ahn, Jae-Hong;Lee, Jong-Sung;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2073-2075
    • /
    • 2003
  • This paper presents the active vibration control of flexible cantilever beam using piezoceramic actuators. The transfer function from the force input to the bending displacement was obtained via modal analysis results and piezoelectric constitutive equations. For the active vibration control piezoceramic actuators and sensors were used to construct a flexible smart cantilever beam. To further enhance the sensing and actuation properties of the piezoceramics, a typical interdigitated electrode pattern was fabricated. The PID controller was designed via various simulation and experiment trials. It was shown that the PID controller could suppress vibration of the beam effectively. Simulations and experiments verified good performances of the designed controller.

  • PDF

Grid Voltage Estimation Method for Modular Plug-in Active Power Decoupling Circuits (모듈형 플러그인 능동전력디커플링 회로를 위한 계통전압 추종 방법)

  • Kim, Dong-Hee;Kim, Jeong-Tae;Park, Sung-Min;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.294-297
    • /
    • 2021
  • A grid voltage estimation method for modular plug-in active power decoupling (APD) circuits is proposed in this study as direct replacements of electrolytic capacitors. Since modular plug-in APD circuits cannot have additional grid voltage sensors and should be operated independently without information exchange with the front-end converter, it is impossible to obtain the phase information of the grid directly. Therefore, the proposed method uses the second-order harmonic component of the DC-link voltage to estimate the grid voltage necessary to control the APD circuit. By employing the proposed method, the concept of modular plug-in APD circuits can be realized and implemented without direct detection of the grid voltage. The experimental results based on hardware-in-the-loop simulation (HILS) validate the effectiveness of the proposed control method.

CO Gas Sensing Characteristics of Nanostructured ZnO Thin Films (산화아연 나노구조 박막의 일산화탄소 가스 감지 특성)

  • Hung, Nguyen Le;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.235-240
    • /
    • 2010
  • We investigated the carbon monoxide (CO) gas-sensing properties of nanostructured Al-doped zinc oxide thin films deposited on self-assembled Au nanodots (ZnO/Au thin films). The Al-doped ZnO thin film was deposited onto the structure by rf sputtering, resulting in a gas-sensing element comprising a ZnO-based active layer with an embedded Pt/Ti electrode covered by the self-assembled Au nanodots. Prior to the growth of the active ZnO layer, the Au nanodots were formed via annealing a thin Au layer with a thickness of 2 nm at a moderate temperature of $500^{\circ}C$. It was found that the ZnO/Au nanostructured thin film gas sensors showed a high maximum sensitivity to CO gas at $250^{\circ}C$ and a low CO detection limit of 5 ppm in dry air. Furthermore, the ZnO/Au thin film CO gas sensors exhibited fast response and recovery behaviors. The observed excellent CO gas-sensing properties of the nanostructured ZnO/Au thin films can be ascribed to the Au nanodots, acting as both a nucleation layer for the formation of the ZnO nanostructure and a catalyst in the CO surface reaction. These results suggest that the ZnO thin films deposited on self-assembled Au nanodots are promising for practical high-performance CO gas sensors.

Biomimetic Actuator and Sensor for Robot Hand (로봇 손용 인체모방형 구동기 및 센서)

  • Kim, Baek-Chul;Chung, Jinah;Cho, Hanjoung;Shin, Seunghoon;Lee, Hyongsuk;Moon, Hyungpil;Choi, Hyouk Ryeol;Koo, Jachoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1497-1502
    • /
    • 2012
  • To manufacture a robot hand that essentially mimics the functions of a human hand, it is necessary to develop flexible actuators and sensors. In this study, we propose the design, manufacture, and performance verification of flexible actuators and sensors based on Electro Active Polymer (EAP). EAP is fabricated as a type of film, and it moves with changes in the voltage because of contraction and expansion in the polymer film. Furthermore, if a force is applied to an EAP film, its thickness and effective area change, and therefore, the capacitance also changes. By using this mechanism, we produce capacitive actuators and sensors. In this study, we propose an EAP-based capacitive sensor and evaluate its use as a robot hand sensor.