• 제목/요약/키워드: Active Metal

검색결과 869건 처리시간 0.032초

저전력 31.6 pJ/step 축차 근사형 용량-디지털 직접 변환 IC (Low Power 31.6 pJ/step Successive Approximation Direct Capacitance-to-Digital Converter)

  • 고영운;김형섭;문영진;이변철;고형호
    • 센서학회지
    • /
    • 제27권2호
    • /
    • pp.93-98
    • /
    • 2018
  • In this paper, an energy-efficient 11.49-bit successive approximation register (SAR) capacitance-to-digital converter (CDC) for capacitive sensors with a figure of merit (FoM) of 31.6 pJ/conversion-step is presented. The CDC employs a SAR algorithm to obtain low power consumption and a simplified structure. The proposed circuit uses a capacitive sensing amplifier (CSA) and a dynamic latch comparator to achieve parasitic capacitance-insensitive operation. The CSA adopts a correlated double sampling (CDS) technique to reduce flicker (1/f) noise to achieve low-noise characteristics. The SAR algorithm is implemented in dual operating mode, using an 8-bit coarse programmable capacitor array in the capacitance-domain and an 8-bit R-2R digital-to-analog converter (DAC) in the charge-domain. The proposed CDC achieves a wide input capacitance range of 29.4 pF and a high resolution of 0.449 fF. The CDC is fabricated in a $0.18-{\mu}m$ 1P6M complementary metal-oxide-semiconductor (CMOS) process with an active area of 0.55 mm2. The total power consumption of the CDC is $86.4{\mu}W$ with a 1.8-V supply. The SAR CDC achieves a measured 11.49-bit resolution within a conversion time of 1.025 ms and an energy-efficiency FoM of 31.6 pJ/step.

Food Component Characteristics of Tuna Livers

  • Kang, Kyung-Tae;Heu, Min-Soo;Jee, Seung-Joon;Lee, Jae-Hyoung;Kim, Hye-Suk;Kim, Jin-Soo
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.367-373
    • /
    • 2007
  • Livers of skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) were investigated on the food compositional characteristics and also compared to that of Alaska pollack (Theragra chalcogramma). The proximate compositions of skipjack tuna and yellowfin tuna livers were high in crude protein, carbohydrate, and crude ash, while were low in crude lipid when compared to that of Alaska pollack liver. The results of heavy metal suggested that tuna livers appeared safe as a food resource. The total amino acid contents of skipjack tuna and yellowfin tuna livers were 17.7 and 17.1 g/100 g, respectively, and the major amino acids in both livers were aspartic acid, glutamic acid, alanine, valine, leucine, and lysine. Tuna livers were good sources of iron and zinc, while have low lipid content. The extractive nitrogen contents of skipjack tuna and yellowfin tuna livers were 526.5 and 468.2 mg/100 g, respectively, and their major free amino acids were taurine, glutamic acid, and alanine. From the results of taste value, the major taste active compounds among free amino acids were glutamic acid and aspartic acid.

강소성 유한 요소 해석에 연계한 Rate-Independent 결정소성학을 이용한 3차원 알루미늄 압출재에서의 변형 집합 조직 예측 (Prediction of Texture Evolution of Aluminum Extrusion Processes using Rigid-Plastic Finite Element Method based on Rate-Independent Crystal Plasticity)

  • 김경진;양동열;윤정환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.485-488
    • /
    • 2005
  • Most metals are polycrystalline material whose deformation is dominated by the slip system. During the deformation process, orientation of slip systems is rearranged with preferred orientations, leading to deformation-induced crystallographic texture which is called deformation texture. Depending on the texture development, the property of material can be changed. The rate-independent crystal plasticity which is based on the Schmid law as a yield function causes a non-uniqueness in the choice of active slip systems. In this work, to avoid the slip system ambiguity problem, rate-independent crystal plasticity model based on the smooth yield surface with rounded-off corners is adopted. In order to simulate the polycrystalline material under plastic deformation, we employ the Taylor model of polycrystal behavior that all the grains are assumed to be subjected to the macroscopic velocity gradient. Rigid-plastic finite element program based on this rate-independent crystal plasticity is developed to predict the grain-level deformation behavior of FCC metals during metal forming processes. In the finite element calculation, one integration point is considered as a crystalline aggregate which has a number of crystals. Macroscopic behavior of material can be deduced from the behavior of aggregates. As applications, the extrusion processes are simulated and the changes of mechanical properties are predicted.

  • PDF

기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구 (A Study on Nano/micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique)

  • 조상현;윤성원;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1507-1510
    • /
    • 2005
  • This study was carried out as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-\mu{m}-deep$ indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.49 GPa and 100 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46-0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined area during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

  • PDF

PAD법으로 제작된 산화코발트-산화주석 복합체의 가스 감응 특성 (Cobalt Oxide-Tin Oxide Composite: Polymer-Assisted Deposition and Gas Sensing Properties)

  • 안세용;이위;장동미;정혁;김도진
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.611-616
    • /
    • 2010
  • A cobalt oxide - tin oxide nanocomposite based gas sensor on an $SiO_2$ substrate was fabricated. Granular thin film of tin oxide was formed by a rheotaxial growth and thermal oxidation method using dc magnetron sputtering of Sn. Nano particles of cobalt oxide were spin-coated on the tin oxide. The cobalt oxide nanoparticles were synthesized by polymer-assisted deposition method, which is a simple cost-effective versatile synthesis method for various metal oxides. The thickness of the film can be controlled over a wide range of thicknesses. The composite structures thus formed were characterized in terms of morphology and gas sensing properties for reduction gas of $H_2$. The composites showed a highest response of 240% at $250^{\circ}C$ upon exposure to 4% $H_2$. This response is higher than those observed in pure $SnO_2$ (90%) and $Co_3O_4$ (70%) thin films. The improved response with the composite structure may be related to the additional formation of electrically active defects at the interfaces. The composite sensor shows a very fast response and good reproducibility.

실리콘 슬러지로부터 리튬전지(電池) 음극용(陰極用) Si-SiC-CuO-C 복합물의 합성(合成) (Synthesis of Si-SiC-CuO-C Composite from Silicon Sludge as an Anode of Lithium Battery)

  • 정구진;장희동;이철경
    • 자원리싸이클링
    • /
    • 제19권4호
    • /
    • pp.51-57
    • /
    • 2010
  • 실리콘 웨이퍼공정에서 발생하는 실리콘 슬러지로부터 리싸이클링 공정으로 Si-SiC 혼합물을 분리 회수한 다음 기계적 합성법으로 Si-SiC-CuO-C 복합물을 제조하였으며, 리튬전지 음극물질로서의 가능성을 조사하였다. 실리콘 슬러지의 주요 불순물은 절삭유, 금속불순물 및 SiC를 들 수 있다. 오일세정-자력선별-산세척으로 절삭유와 금속불순물을 제거한 다음 고에너지 밀링법으로 Si-SiC-CuO-C 복합물을 합성하였다. 복합물의 충방전 용량과 사이클 특성을 조사한 결과, 수명에 따른 용량 유지 특성이 향상된 우수한 결과를 얻을 수 있었다. 복합물을 구성하는 SiC와 CuO 관련 물질은 실리콘의 부피팽창으로 인한 기계적 파괴 현상을 억제하는 요소로 작용하는 것으로 추정되며, 반면에 Fe 등과 같은 불순물은 전극의 충방전 용량을 감소시키는 요인으로서 전극물질 합성 전에 10 ppm 이내로 제거되어야 하는 것으로 판단된다.

콩즙 처리 방법에 따른 천연염색포의 염색성 연구 (A Study for Natural Dyeing Textiles with Bean-Juice Treatment Method)

  • 박견순;최인려;배계인
    • 한국의상디자인학회지
    • /
    • 제9권2호
    • /
    • pp.85-92
    • /
    • 2007
  • This study focused on bean-juice treatment method which have dyeing property to indigo, yellow soil, sappan wood, cochineal and also on the possibility of applying to mordanting. This is different from the active mordanting using chemicals. Natural mordants with development of dyeing are not harmful, also are the medicines for disease. Limestone and ash neutralize the acidic soil. bean-juice protein adhere to cellulose surface and change the physical properties of protein so that coloring of dye is better than before and film non-soluble in water is made. Therefore the color made from bean-juice process lasts after washing. This study try to show one of the ways to improve the current method using the heavy metal which can have bad effects for environment and human being. Bean-juice(raw bean, heated bean) treatment method can be the way to fix the natural dyeing problem of bad dyeing. Bean-juice had been treated under various condition with pre-treatment, post-treatment and raw bean, heated bean. Following results are obtained in this study. In the case of Indigo dyeing, pre-treatment of heated bean shows the biggest difference of color. In the case of yellow soil dyeing, pre-treatment of raw bean-juice shows the biggest gap of color. Pre-treatment of heated bean in sappan wood dyeing case and post-treatment of raw bean show bigger color difference than pre-treatment of raw bean. In cochineal dyeing, raw bean pre-treatment shows the biggest color difference.

  • PDF

해수 중 글루코오스 농도의 전기화학적 측정 (Electrochemical Determination of Glucose in Sea Water)

  • 김영한
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.73.2-77
    • /
    • 2000
  • 해수의 산소요구량(COD; Chemical Oxygen Demand)을 수정진동자로 측정할 수 있는 지의 가능성을 검증하기 위하여 글루코오스 용액에서의 수정진동자의 전기화학적 특성을 조상하였다. 산소요구량을 측정하기 위해서 수정진동자의 표면이 산화되어야 하므로 상대적으로 활성이 있는 금속을 9 MHzAT형 수정진동자의 표면에 코팅하고 일정한 전위를 가할 때 전류와 공진저항의 변화를 조사함으로서 수정진동자의 전기화학적 특성을 조사하였다. 수정진동자는 특별히 제작된 용기에 설치하였고 수정진동자 분석기가 공진주파수와 공진저항의 동시 측정에 사용되었다. 글루코오스의 농도 변화에 따른 측정치의 변화를 관찰하여 농도와 전기화학적 특성의 상관관계를 추적하였다. 이러한 특성조사의 결과 글루코오스 농도가 900 ppm 이하에서는 표준전극 기준 -180mV의 전위가 가해질 때 농도와 초기 최대전류 사이에 직선관계가 있음을 알 수 있었고 이를 이용하면 해수 중 글루코오스 농도를 측정할 수 있으며 글루코오스 농도와 화학적 산소 요구량 사이에 직접적인 관계가 있음을 고려할 때 수정진동자를 이용한 화학적 산소요구량의 측정이 가능함을 알 수 있었다.

  • PDF

High-Speed CMOS Binary Image Sensor with Gate/Body-Tied PMOSFET-Type Photodetector

  • Choi, Byoung-Soo;Jo, Sung-Hyun;Bae, Myunghan;Kim, Jeongyeob;Choi, Pyung;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제23권5호
    • /
    • pp.332-336
    • /
    • 2014
  • In this paper, we propose a complementary metal oxide semiconductor (CMOS) binary image sensor with a gate/body-tied (GBT) PMOSFET-type photodetector for high-speed operation. The GBT photodetector of an active pixel sensor (APS) consists of a floating gate ($n^+$-polysilicon) tied to the body (n-well) of the PMOSFET. The p-n junction photodiode that is used in a conventional APS has a good dynamic range but low photosensitivity. On the other hand, a high-gain GBT photodetector has a high level of photosensitivity but a narrow dynamic range. In addition, the pixel size of the GBT photodetector APS is less than that of the conventional photodiode APS because of its use of a PMOSFET-type photodetector, enabling increased image resolution. A CMOS binary image sensor can be designed with simple circuits, as a complex analog to digital converter (ADC) is not required for binary processing. Because of this feature, the binary image sensor has low power consumption and high speed, with the ability to switch back and forth between a binary mode and an analog mode. The proposed CMOS binary image sensor was simulated and designed using a standard CMOS $0.18{\mu}m$ process.

Effects of Simultaneous Bending and Heating on Characteristics of Flexible Organic Thin Film Transistors

  • Cho, S.W.;Kim, D.I.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.470-470
    • /
    • 2013
  • Recently, active materials such as amorphous silicon (a-Si), poly crystalline silicon (poly-Si), transition metal oxide semiconductors (TMO), and organic semiconductors have been demonstrated for flexible electronics. In order to apply flexible devices on the polymer substrates, all layers should require the characteristic of flexibility as well as the low temperature process. Especially, pentacene thin film transistors (TFTs) have been investigated for probable use in low-cost, large-area, flexible electronic applications such as radio frequency identification (RFID) tags, smart cards, display backplane driver circuits, and sensors. Since pentacene TFTs were studied, their electrical characteristics with varying single variable such as strain, humidity, and temperature have been reported by various groups, which must preferentially be performed in the flexible electronics. For example, the channel mobility of pentacene organic TFTs mainly led to change in device performance under mechanical deformation. While some electrical characteristics like carrier mobility and concentration of organic TFTs were significantly changed at the different temperature. However, there is no study concerning multivariable. Devices actually worked in many different kinds of the environment such as thermal, light, mechanical bending, humidity and various gases. For commercialization, not fewer than two variables of mechanism analysis have to be investigated. Analyzing the phenomenon of shifted characteristics under the change of multivariable may be able to be the importance with developing improved dielectric and encapsulation layer materials. In this study, we have fabricated flexible pentacene TFTs on polymer substrates and observed electrical characteristics of pentacene TFTs exposed to tensile and compressive strains at the different values of temperature like room temperature (RT), 40, 50, $60^{\circ}C$. Effects of bending and heating on the device performance of pentacene TFT will be discussed in detail.

  • PDF