• Title/Summary/Keyword: Active Metal

Search Result 869, Processing Time 0.035 seconds

Structural Analysis of [Cu(II)-amyloidogenic peptide] Complexes

  • Cha, Eugene;Seo, Jae-Hong;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.17-23
    • /
    • 2018
  • Studies on the interactions of amyloidogenic proteins with trace metals, such as copper, have indicated that the metal ions perform a critical function in the early oligomerization process. Herein, we investigate the effects of Cu(II) ions on the active sequence regions of amyloidogenic proteins using electrospray ionization mass spectrometry (ESI-MS) and collision induced dissociation tandem MS (CID-MS/MS). We chose three amyloidogenic peptides NNQQNY, LYQLEN, and VQIVYK from yeast prion like protein Sup35, insulin chain A, and tau protein, respectively. [Cu-peptide] complexes for all three peptides were observed in the mass spectra. The mass spectra also show that increasing Cu(II) concentrations decrease the population of existing peptide oligomers. The tandem mass spectrum of NNQQNY shows preferential binding for the N-terminal region. All three peptides are likely to appear to be in a Cu-monomer-monomer (Cu-M-M) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

Ni added Si-Al Alloys with Enhanced Li+ Storage Performance for Lithium-Ion Batteries

  • Umirov, Nurzhan;Seo, Deok-Ho;Jung, Kyu-Nam;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.82-88
    • /
    • 2019
  • Here, we report on nanocrystalline Si-Al-M (M = Fe, Cu, Ni, Zr) alloys for use as an anode for lithium-ion batteries, which were fabricated via a melt-spinning method. Based on the XRD and TEM analyses, it was found that the Si-Al-M alloys consist of nanocrystalline Si grains surrounded by an amorphous matrix phase. Among the Si-Al-M alloys with different metal composition, Ni-incorporated Si-Al-M alloy electrode retained the high discharge capacity of 2492 mAh/g and exhibited improved cyclability. The superior $Li^+$ storage performance of Si-Al-M alloy with Ni component is mainly responsible for the incorporated Ni, which induces the formation of ductile and conductive inactive matrix with crystalline Al phase, in addition to the grain size reduction of active Si phase.

Pseudoaneurysm Formation due to Popliteal Artery Injury Caused by Drilling during Medial Opening Wedge High Tibial Osteotomy

  • Chun, Keun Churl;So, Byung Jun;Kang, Hyun Tak;Chun, Churl-Hong
    • Knee surgery & related research
    • /
    • v.30 no.4
    • /
    • pp.364-368
    • /
    • 2018
  • We report a case of 53-year-old woman with an injured popliteal artery due to excessive drilling with a drill bit during medial opening wedge high tibial osteotomy (MOWHTO). Pseudoaneurysm was diagnosed three days after surgery and confirmed by urgent computed tomography (CT) angiography. Open vascular surgery with resection of the perivascular hematoma and end-to-end anastomosis using ipsilateral saphenous vein interposition graft was performed. CT angiography at 8 months postoperatively showed that blood flow was maintained without obstruction of the graft site and active dorsiflexion of the foot was possible. To reduce neurovascular injury during MOWHTO, it is important not to drill the far cortex at the proximal part of the osteotomy site when using a drill bit, and the metal should be positioned posteromedially as much as possible.

Electrochemical Behaviors of Sparteine-Copper (II) Dihalide

  • Sung-Nak Choi;Jin-Hyo Park;Young-In Kim;Yoon-Bo Shim
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.276-281
    • /
    • 1991
  • Electrochemical behaviors of optically active sparteine-Cu(II) dihalide complexes were investigated by polarography and cyclic voltammetry (CV). These Cu(II) complexes are rather easier to be reduced to Cu(I) states when comparison is made with other nonplaner copper complexes, We have assigned the CV peaks and polarographic waves related to the redox processes for these complexes. We could also observe the exchange reaction of Cu(II) ion in the complex with mercury metal in the cell having mercury pool. The redox mechanism of these complelxes is as follows; The 1st wave appeared at +0.47 V/+0.65 V corresponds to the reaction of $SpCuX_2+ e{\rightleftarrow}SpCuX_{2^-}$ and the 2nd one at +0.26 V/+0.21 V does the reaction of $SpCuX_{2 ^-} +e{\rightleftarrow}SpCuX_2^{2-}$. The 3rd one at -0.35 V/-0.27 V is dueto the reduction of mercury complex formed via exchange reaction. Where, X is chloride ion.

Studies on the Interaction of Alkyl Thiophosphinate with Precious Metals

  • 김동수
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.321-325
    • /
    • 1995
  • Adsorption mechanisms of diisobutyl dithiophosphinate (DIBDTPI) and diisobutyl monothiophosphinate (DIBMTPI) on gold and gold-silver alloys (80:20 and 50:50) have been studied. The adsorption mechanisms on gold-silver alloys can be explained by the EC mechanism involving an electron transfer step and a chemical reaction step. Thus, the adsorption should be controlled by the E of the electrochemical oxidation of the electrode involved and the pK of the metal collector complex. Both di- and mono- thiophosphinate adsorb on 50:50 Au-Ag alloy at lower potential than on 80:20 Au-Ag alloy surface. There are no significant differences between the reactivities of DIBDTPI and DIBMTPI with precious metals except that the dithio- compound can be oxidized to dimer on gold at high potentials, while the monothio- homologue cannot. In this regard, DIBDTPI may be a better surface active reagent for pure gold than DIBMTPI.

Ultrahigh supercapacitance in cobalt oxide nanorod film grown by oblique angle deposition technique

  • Kannan, V.;Choi, Jong-Hyeok;Park, Hyun-Chang;Kim, Hyun-Seok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1399-1402
    • /
    • 2018
  • Nanorod films of cobalt oxide ($Co_3O_4$) have been grown by a unique oblique angle deposition (OAD) technique in an e-beam evaporator for supercapacitor electrode applications. This technique offers a non-chemical route to achieve large aspect ratio nanorods. The fabricated electrodes at OAD $80^{\circ}$ exhibited a specific capacitance of 2875 F/g. The electrochemically active surface area was $1397cm^{-2}$, estimated from the non-Faradaic capacitive current region. Peak energy and power densities obtained for $Co_3O_4$ nanorods were 57.7 Wh/Kg and 9.5 kW/kg, respectively. The $Co_3O_4$ nanorod electrode showed a good endurance of 2000 charge-discharge cycles with 62% retention. The OAD approach for fabricating supercapacitor nanostructured electrodes can be exploited for the fabrication of a broad range of metal oxide materials.

Electrochemical Properties of Lithium Batteries with Nickel Sulfide by Ammonium Polysulfide (다황화암모늄에 의해 제조된 황화니켈을 이용한 리튬전지의 전기 화학적 특성 평가)

  • RYU, HO SUK
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.612-617
    • /
    • 2021
  • In the case of a metal sulfide electrode, it is used as an anode or cathode active material in a lithium battery. The reason is that the voltage exists between 0.8 and 2.0 V via lithium electrode and the discharge and charge capacity is high. In order to manufacture nickel sulfide for electrode, which are widely used, nano-nickel powder was sulfided using ammonium polysulfide, and single-phase NiS electrodes were manufactured through heat treatment. The prepared NiS electrode had a high initial capacity of 500 mAh/g or more, and was stabilized after 20 cycles to maintain a capacity of 400 mAh/g or more until 100 cycles.

Characterization of Non-precious Metal for Fuel Cell Catalyst with Conducting Polymer (전도성 고분자를 이용한 연료전지용 비백금 촉매의 특성화 정량)

  • Kim, Hun-Jong;Lee, Hyo June;Ahn, Ji Eun;Kim, Hansung;Lee, Ho-Nyun
    • Applied Chemistry
    • /
    • v.15 no.2
    • /
    • pp.137-140
    • /
    • 2011
  • Excellent active and stable platinum catalyst fuel cells currently being used as a catalyst. However, because of the high price of platinum catalyst, such as non-precious catalyst has been studied by a variety of fuel cell catalysts. In this study, Co/ PANi//CNT composite catalyst after synthesis through various heating process was to increase the activity of the catalyst. At 700℃ showed the best catalytic activity, using a composite catalyst was to be used as cathode electrodes in fuel cell.

Development of a Care Robot for Lift and Transfer of Bedridden Patients (와상환자의 이승 및 이송 작업을 위한 돌봄로봇 개발)

  • Konchanok Vorasawad;Hyeokdong Kweon;Changwon Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.403-408
    • /
    • 2023
  • In this paper, we introduce the results of the development of a care robot for the safe lifting and transportation of bedridden patients with difficulty moving by themselves, especially, in medical facilities. The purpose of the developed patient transfer robot is to improve the convenience of care givers and enhance the safety and comfort of care recipients by facilitating patient lifting and patient transfer tasks by applying robot technology. In order to implement the lifting function, a hoist was designed and developed, and a sway control and rollover warning system were included in the hoist module as product differentiators. In addition, in terms of implementing the transfer function, an omnidirectional movement mechanism to improve operability in confined spaces and an active safety system to prevent collisions were developed. The function of the developed patient transfer robot was verified through performance evaluation by an authorized testing agency.

A Study on the joining of $Al_2$$O_3$ to STS304 with using Cu-Ti Insert metal (Cu-Ti삽입금속을 이용한 $Al_2$$O_3$-STS304접합체 계면조직에 관한 연구)

  • Kim, Byeong-Mu;Sin, Sun-Beom;Gang, Jeong-Yun;Lee, Sang-Rae
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.33-42
    • /
    • 1993
  • Abstract The increasing application of $Al_2$,$O_3$ and related ceramics as engineering materials is because of their attractive properties of fine ceramics. One solution to the wide variety of ceramic to metal combination lies in the effective joining. Active metal brazing of $Al_2$,$O_3$, to STS304 was investigated using Cu -Ti alloys. Titanium additive is chosen since it is good oxide former~. Brazing is performed under vacuum($10^{-3}$-$10^{-4}$ torr), a temperature between 1100 and 120$0^{\circ}C$ and time of 0.5-1.5hr. The microstructure of the brazed joints of $Al_2$,$O_3$ to STS304 with Cu-Ti insert metals were examined by using optical microscope and SEM and reaction products were analyzed by using EDX, WDX and XRD. Also interfacial reactions occuring during the brazing of $Al_2$,$O_3$/Cu-Ti/STS304 system are discussed. Experimental results showed formation of Titanium oxide T$i_2$$O_3$ which is attributable to the joining $Al_2$,$O_3$ to STS304 with Cu-Ti insert metal.

  • PDF