• Title/Summary/Keyword: Active Metal

Search Result 865, Processing Time 0.026 seconds

The Development of a machining technology on the micro needle pattern with a quadrangular pyramid or cone shapes (사각뿔/원뿔 형상의 마이크로 니들 가공 기술 개발)

  • Choi, Kyu-Wan;Chang, Sung-Ho
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.25-29
    • /
    • 2016
  • Recently, a hyaluronic acid micro needle patch for therapeutic and cosmetic purposes has been used by attaching directly to the skin with a pattern having a micro needle shape of 1/3 thickness of hair. These products are attracting attention as an innovative product that maximizes the effect by activating the active ingredient in the skin in the deep skin without blocking the horny layer because the micro needle shape exists on the patch surface so that it can penetrate effectively to the skin. Currently, DAB (droplet air blowing) or MEMS technology is used to make pattern shapes for patches. Because of this technology, manufacturing time is long and manufacturing cost is high, so we tried to develop the mold technology to machine the microneedle shape directly to the metal. In this study, we first fabricated a needle pattern with a quadrangular pyramid shape and finally produced a conical needle pattern.

A Method to Simulate Frictional Heating at Defects in Ultrasonic Infrared Thermography

  • Choi, Wonjae;Choi, Manyong;Park, Jeonghak
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.407-413
    • /
    • 2015
  • Ultrasonic infrared thermography is an active thermography methods. In this method, mechanical energy is introduced to a structure, it is converted into heat energy at the defects, and an infrared camera detects the heat for inspection. The heat generation mechanisms are dependent on many factors such as structure characteristics, defect type, excitation method and contact condition, which make it difficult to predict heat distribution in ultrasonic infrared thermography. In this paper, a method to simulate frictional heating, known to be one of the main heat generation mechanisms at the closed defects in metal structures, is proposed for ultrasonic infrared thermography. This method uses linear vibration analysis results without considering the contact boundary condition at the defect so that it is intuitive and simple to implement. Its advantages and disadvantages are also discussed. The simulation results show good agreement with the modal analysis and experiment result.

A Low Voltage, Digital Automatic Gain Controller (비디오 시스템을 위한 저전압, 디지털 자동이득 조절기)

  • 권진호
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.183-186
    • /
    • 2000
  • In this paper we propose a new architecture of a programmable digital automatic gain controller(AGC) for analog interface in mixed mode systems. Compared with conventional analog AGCs which have difficulties in integration due to large capacitors, the proposed AGC is easily integrated. So the production cost can be reduced. In addition, The proposed AGC has a better performance in temperature, and power supply variations, and substrate noise than analog counterparts do. To prevent erroneous operations of the AGC due to noise, a mal-function preventer is newly proposed. In addition, to achieve an optimized AGC time constant, we propose a logic block which controls an up-down counting clock. This is directly related to the changing speed of the AGC gain. Implemented with a 0.25 $\mu\textrm{m}$ 1-poly, 5-metal CMOS parameters, the AGC operates from a single 2.5V power supply with the dynamic range of 36.ldB and occupies active area of 500$\mu\textrm{m}$${\times}$600$\mu\textrm{m}$

  • PDF

Biomimetic Design of IPMC Actuator having Webfoot Form (생체모방 물갈퀴형 IPMC 구동기 설계)

  • Kim, Seon-Gi;Kim, On-Ah;Lee, Seung-Yop
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1558-1562
    • /
    • 2008
  • Ionic polymer metal composite (IPMC), one of Electro- Active Polymer (EAP) actuators, has great attention due to the low-voltage driven, large deformation and its potential for artificial muscles. In this paper, we firstly review fish swimming modes using various propulsion mechanisms. Based on study on the swimming mechanisms, we develop an underwater robot actuator which mimics fanning motion of webfoot form. It consists of four actuators fabricated by using IPMC and PDMS which mimics Bio-inspired motion Experiments using a prototype show that the webfooted IPMC actuator generates large deformation and propulsion.

  • PDF

Characteristics of high energy density hybrid capacitor using metal oxide electrode (금속산화물 전극을 사용한 고 에너지밀도 하이브리드 커패시터 특성)

  • Yoon, Hong-Jin;Shin, Yoon-Sung;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.329-334
    • /
    • 2011
  • The electrochemical performances of an asymmetric hybrid capacitor were investigated using $LiFePO_4$ as the positive electrode and active carbon fibers(ACF) as the negative electrode. The electrochemical behaviors of a nonaqueous hybrid capacitor were characterized by constant current charge/discharge test. The specific capacitance using $LiFePO_4$/ACF electrode turned out to be $0.87F/cm^2$ and the unit cell showed excellent cycling performance. This hybrid capacitor was able to deliver a specific energy as high as 178 Wh/kg at a specific power of 1,068 W/kg.

The Application of Piezoelectric Materials in Smart Structures in China

  • Qiu, Jinhao;Ji, Hongli
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.266-284
    • /
    • 2010
  • Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, the research activities and achievements on the applications of piezoelectric materials in smart structures in China, including vibration control, noise control, energy harvesting, structural health monitoring, and hysteresis control, are introduced. Special attention is given to the introduction of semi-active vibration suppression based on a synchronized switching technique and piezoelectric fibers with metal cores for health monitoring. Such mechanisms are relatively new and possess great potential for future applications in aerospace engineering.

Diffusion Coefficient of Iron in ZnSe Polycrystals from Metal Phase for mid-IR Gain Medium Application

  • Jeong, Junwoo;Myoung, NoSoung
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.371-375
    • /
    • 2014
  • Diffusion coefficient of Fe in polycrystalline host ZnSe as a mid-IR gain medium has been measured in the annealing temperature ranges of 850 to $950^{\circ}C$. The synthesis of the samples was carried out in quartz ampoule in which the Fe thin film deposited by physical vapor evaporation method on the ZnSe. One can realize that the diffusion coefficient strongly depends on the surface active surfactants through the cleaning process and the substrate temperature during the thin film deposition leading to $2.04{\times}10^{-9}cm^2/s$ for $Fe^{2+}:ZnSe$. The Annealing temperature dependence of the Fe ions diffusion in ZnSe was used to evaluate the activation energy, $E_a$=1.39 eV for diffusion and the pre-exponential factor $D_0$ of $13.5cm^2/s$.

Growth and Properties of p-type Transparent Oxide Semiconductors

  • Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.99-99
    • /
    • 2014
  • Transparent oxide semiconductors (TOSs) are. currently attracting attention for application to transparent electrodes in optoelectronic devices and active channel layers in thin-film transistors. One of the key issues for the realization of next generation transparent electronic devices such as transparent complementary metal-oxide-semiconductor thin-film transistors (CMOS TFTs), transparent wall light, sensors, and transparent solar cell is to develop p-type TOSs. In this talks, I will introduce issues and status related to p-type TOSs such as LnCuOQ (Ln=lanthanide, Q=S, Se), $SrCu_2O_2$, $CuMO_2$ (M=Al, Ga, Cr, In), ZnO, $Cu_2O$ and SnO. The growth and properties of SnO and Cu-based oxides and their application to electronic devices will be discussed.

  • PDF

Passive Transient Voltage Suppression Devices for 42-Volt Automotive Electrical Systems

  • Shen, Z.John
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.171-180
    • /
    • 2002
  • New 42-volt automotive electrical systems can provide significant improvements in vehicle performance and fuel economy. It is crucial to provide protection against load dump and other overvoltage transients in 42-volt systems. While advanced active control techniques are generally considered capable of providing such protection, the use of passive transient voltage suppression (TVS) devices as a secondary or supplementary protection means can significantly improve design flexibility and reduce system costs. This paper examines the needs and options for passive TVS devices for 42-volt applications. The limitations of the commonly available automotive TVS devices, such as Zener diodes and metal oxide varistors (MOV), are analyzed and reviewed. A new TVS device concept, based on power MOSFET and thin-film polycrystalline silicon back-to-back diode technology, is proposed to provide a better control on the clamp voltage and meet the new 42-volt specification. Both experimental and modeling results are presented. Issues related to the temperature dependence and energy absorbing capability of the new TVS device are discussed in detail. It is concluded that the proposed TVS device provides a cost-effective solution for load dump protection in 42-volt systems.

Improved Performance of 1.55 ㎛ InGaAsP/InP Superluminescent Diodes by Tapered Stripe Structure

  • Choi Young-Kyu
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.1
    • /
    • pp.39-43
    • /
    • 2005
  • We proposed a structure for a 1.55 ㎛ strained separate confinement heterostructure (SCH) multi- quantum well (MQW) superluminescent diode (SLD), having a tapered active region. SLD was fabricated through a two-step procedure: the first step being metal organic chemical vapor deposition (MOCVD) and the second-step being liquid phase epitaxy (LPE). We used a 15 laterally tilted stripe and window region to suppress the lasing action of the SLD. The performance of the SLD showed output power of 11 mW with no lasing under 200 mA pulse driving. The full-width at half-maximum was 42 nm at 200 mA, 25℃.