• Title/Summary/Keyword: Active Magnetic Bearing(AMB)

Search Result 51, Processing Time 0.023 seconds

Sliding Mode Control of an Active Magnetic Bearing System (능동자기베어링계의 슬라이딩모드 제어)

  • 강민식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.439-448
    • /
    • 2004
  • Magnetic bearing is an attractive device in precision engineering field because of its non-contacting nature and controllability of its dynamic characteristics. This paper provides a method of designing a sliding mode control for an active magnetic hearing(AMB) system which is used to support the elevation axis of a target tracking sight instead of mechanical bearings to eliminate the effect of mechanical friction. In such system, the axis should be levitated and supported within a predetermined air gap while AMB is excited by base motion. Experimental results showed that the sliding mode control is effective in disturbance rejection than conventional PID-control without any additive measurements.

A Design and Control of an Active Magnetic Bearing System (능동형 자기 베어링 시스템의 설계 및 제어)

  • 김종문;최영규
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.82-89
    • /
    • 2004
  • In this paper, an active magnetic bearing(AMB) system is designed and controlled using a digital Proportional-Integral-Derivative(PID) control concept. The plant dynamics consisting of actuator and rigid rotor dynamics are described. A digital PID controller with a global control and a local control concept is designed and implemented using digital signal processor. Some experiments are conducted with each global control and local control concept. These include start-up test, impulse test, whirl response, and generator load test. The experimental results and comparison between those of a global control and a local control indicate that the global control of concept has impressive static and dynamic control performance for the prototype considered. From the whirl test, the developed system set can be controlled within about $\pm10\mu\textrm{m}$ gap variation at the rotational speed of 6000rpm and generate the AC power of frequency of $60\textrm{Hz}$, voltage of 100V and current of 0.8$\textit{A}$.

Base Acceleration Feedforward Control For An Active Magnetic Bearing System Subject To Base Motion (베이스 가진을 받는 전자기 베어링계의 베이스 가속도 피드포워드 제어)

  • Kang, Min-Sig
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.399.2-399
    • /
    • 2002
  • This paper concerns on a non-rotating single-DOF beam-active magnetic bearing(AMB) system subject to arbitrary shaped base motion. In such a system, it is desirable to retain the beam within the predetermined air-gap under foundation excitation. Motivated form this, an adaptive acceleration feedforward control is proposed to reduce the base motion response without deteriorating other feedback control performances. Experimental results demonstrate the effectiveness of the acceleration feedforward control.

  • PDF

System Modeling and Robust Control of an AMB Spindle : Part I Modeling and Validation for Robust Control

  • Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1844-1854
    • /
    • 2003
  • This paper discusses details of modeling and robust control of an AMB (active magnetic bearing) spindle, and part I presents a modeling and validation process of the AMB spindle. There are many components in AMB spindle : electromagnetic actuator, sensor, rotor, power amplifier and digital controller. If each component is carefully modeled and evaluated, the components have tight structured uncertainty bounds and achievable performance of the system increases. However, since some unknown dynamics may exist and the augmented plant could show some discrepancy with the real plant, the validation of the augmented plant is needed through measuring overall frequency responses of the actual plant. In addition, it is necessary to combine several components and identify them with a reduced order model. First, all components of the AMB spindle are carefully modeled and identified based on experimental data, which also render valuable information in quantifying structured uncertainties. Since sensors, power amplifiers and discretization dynamics can be considered as time delay components, such dynamics are combined and identified with a reduced order. Then, frequency responses of the open-loop plant are measured through closed-loop experiments to validate the augmented plant. The whole modeling process gives an accurate nominal model of a low order for the robust control design.

Disturbance Observer Based Sliding Mode Control for Multi-DOF Active Magnetic Bearing System Subject to Base Motion (베이스 운동을 받는 다자유도 능동자기베어링계에서 외란 관측기 기반 슬라이딩모드 제어)

  • 강민식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1182-1194
    • /
    • 2004
  • This paper addresses the application of an active magnetic bearing (AMB) system to levitate the elevation axis of an electro-optical sight mounted on a moving vehicle. In this type of system, it is desirable to retain the elevation axis in an air-gap between magnetic bearing stators while the vehicle is moving. To eliminate disturbance responses, a disturbance observer based sliding mode control is developed. This control can decouple disturbance observation dynamics from sliding mode dynamics and preserves the robustness of the sliding control. The sliding surfaces are designed in the consideration of scattering of received image. The proposed control is applied to a 2-DOF active magnetic bearing system subject to base motion. Along with experimental results, the feasibility of the proposed technique is illustrated.

Identification of Dynamic Stiffness of Squeeze Film Damper using Active Magnetic Bearing System as an Exciter (자기베어링 시스템을 가진기로 이용한 스퀴즈 필름 댐퍼의 동강성 계수 규명)

  • Kim, Keun-Joo;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.381-387
    • /
    • 2002
  • In this work, the dynamic characteristics of an oil-lubricated, short SFD with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove. The validity of the analysis is investigated experimentally using an Active Magnetic Bearing (AMB) system as an exciter. For the theoretical solution, the fluid film forces of a grooved SFD are analytically derived so that the dynamic coefficients of a SFD are expressed in terms of its design parameters. For the experimental validation of the analysis, a test rig using AMB as an exciter is proposed to identify the dynamic characteristics of a short SFD with a central groove. As an exciter, the AMB represents a mechatronic device to levitate and position the test journal without any mechanical contact, to generate relative motions of the journal inside the tested SFD and to measure the generated displacements during experiments with fairly high accuracy. Using this test rig, experiments are extensively conducted with different clearance, which is one of the most important design parameters, in order to investigate its effect on the dynamic characteristics and the performance of SFDs. Damping and inertia coefficients of the SFD that are experimentally identified are compared with the analytical results to demonstrate the effectiveness of the analysis. It is also shown that AMB is an ideal device for tests of SFDs.

  • PDF

Development of an Inductive Proximity Sensor in Active Magnetic Bearing System for Magnetically Suspended Centrifugal Blood Pumps (능동 자기 베어링 방식의 자기 부상 원심성 혈액 펌프를 위한 유도성 근접 센서 개발)

  • Kim, H.I.;Kim, H.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.245-246
    • /
    • 1998
  • AMB(Active Magnetic Bearing) systems are popularly used in various areas. In biomedical engineering applications it is a key part of magnetically suspended rotary blood pumps. The special advantage of AMBs is that they enable the rotor to revolve with no physical contact and provide rotary blood pumps with better performances such as low hemolysis level. Fundamentally, AMB systems consist of three parts, proximity sensors for distance detection, microprocessor for control algorithm and power amplifiers for actuating electromagnets. We have developed an inductive type proximity sensor with satisfactory characteristics that can be used in AMB systems. Frequency response was flat at least up to 10 kHz and sensitivity, resolution$(>5{\mu}m)$ and sensing range(<5mm) of the sensor could be adjustable for various purposes. The characteristics of the completed model showed to have satisfactory behaviors compared with the commercially available ones that already appeared to have reliable behaviors in AMB systems.

  • PDF

A Study on System Identification of Active Magnetic Bearing Rotor System Considering Sensor and Actuator Dynamics (센서와 작동기를 고려한 자기베어링 시스템의 식별에 관한 연구)

  • Kim, Chan-Jung;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1458-1463
    • /
    • 2003
  • This paper presents an improved identification algorithm of active magnetic bearing rotor systems considering sensor and actuator dynamics. An AMB rotor system has both real and complex poles so that it is very hard to identify them together. In previous research, a linear transformation through a fictitious proportional feedback was used in order to shift the real poles close to the imaginary axis. However, the identification result highly depends on the fictitious feedback gain, and it is not easy to identify the additional dynamics including sensor and actuators at the same time. First, this paper discusses the necessity and a selection criterion of the fictitious feedback gain. An appropriate feedback gain minimizes dominant SVD(Singular Value Decomposition) error through maximizing rank deficiency. Second, more improvement in the identification is achieved through separating the common additional dynamics in all elements of frequency response matrix. The feasibility of the proposed identification algorithm is proved with two theoretical AMB rotor models. Finally, the proposed scheme is compared with previous identification methods using experimental data, and a great improvement in model quality and large amount of time saving can be achieved with the proposed method.

  • PDF

New Design of Cylindrical Capacitive Sensor for On-line Precision Control of AMB Spindles (자기베어링의 실시간 정밀제어를 위한 원통형 정전용량 변위센서의 새로운 설계)

  • Jeon, Soo;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.548-553
    • /
    • 2000
  • A new design of cylindrical capacitive sensor(CCS) for the displacement measurement of precision active magnetic bearing(AMB) spindle is presented in this paper. This research is motivated by the problem that existing 4-segment CCS is still sensitive to the $3^{rd}$ harmonic component of the geometric errors of a rotor. The procedure of designing new CCS starts from the modeling and error analysis of CCS. The angular size of CCS is set up as a design parameter, and new 8-segment CCS is introduced to possess an arbitrary angular size. The optimum geometry of CCS to minimize the effect of geometric errors is determined through minimum norm approach. Experimental results with test rotors have confirmed the improvement in geometric error suppression.

  • PDF