• 제목/요약/키워드: Active Flutter Control

검색결과 21건 처리시간 0.022초

외부장착물이 있는 항공기 날개의 플러터 특성 및 능동 진동 제어 (Flutter Characteristics and Active Vibration Control of Aircraft Wing with External Store)

  • 강래형;이승준;이인;한재흥
    • 한국군사과학기술학회지
    • /
    • 제10권4호
    • /
    • pp.73-80
    • /
    • 2007
  • Modern aircraft are required to carry various external stores mounted at different locations on the wing. Sometimes the attachment of stores to an aircraft wing leads to flutter speed reduction, which is a very severe aeroelastic problem. In order to suppress structural vibration and expand the flutter boundary of the aircraft with stores, it is necessary to investigate the main problems and characteristics of them. In addition, active vibration control may be required because passive vibration isolators show limited capabilities for the various wing/store configuration. In this paper, therefore, the flutter stability to the various wing/store configurations was investigated and active vibration control of wing/store model was performed using a piezoelectric actuator.

제어기축차기법을 이용한 항공기 날개의 플러터제어 (Active Flutter Control of an Aircraft Wing Using Controller Order Reduction)

  • 고영무;황재혁;김종선;백승호
    • 소음진동
    • /
    • 제5권4호
    • /
    • pp.525-536
    • /
    • 1995
  • In this study, an ROC(Reduced Order Controller) is designed to increase the flutter velocity of an aircraft wing, and the effect of ROC on the flight performance is also analyzed. The aircraft wing used in the paper is modelled as a 3 DOF two-dimensional rigid body. In the disign of controller, LQG and BACR(Balanced Augmented Controller Reduction) strategy is used as control algorithm and controller reduction method respectively. Simulation has been conducted to evaluate the effectiveness of ROC on the active flutter control, compared to FOC(Full Order Controller). It has been found that ROC using BACR is much effective than FOC in the sense of computation effort, without sacrificing the active flutter control performance.

  • PDF

Bridge flutter control using eccentric rotational actuators

  • Korlin, R.;Starossek, U.
    • Wind and Structures
    • /
    • 제16권4호
    • /
    • pp.323-340
    • /
    • 2013
  • An active mass damper system for flutter control of bridges is presented. Flutter stability of bridge structures is improved with the help of eccentric rotational actuators (ERA). By using a bridge girder model that moves in two degrees of freedom and is subjected to wind, the equations of motion of the controlled structure equipped with ERA are established. In order to take structural nonlinearities into consideration, flutter analysis is carried out by numerical simulation scheme based on a 4th-order Runge-Kutta algorithm. An example demonstrates the performance and efficiency of the proposed device. In comparison with known active mass dampers for flutter control, the movable eccentric mass damper and the rotational mass damper, the power demand is significantly reduced. This is of advantage for an implementation of the proposed device in real bridge girders. A preliminary design of a realization of ERA in a bridge girder is presented.

Flutter Suppression of Cantilevered Plate Wing using Piezoelectric Materials

  • Makihara, Kanjuro;Onoda, Junjiro;Minesugi, Kenji
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.70-85
    • /
    • 2006
  • The supersonic flutter suppression of a cantilevered plate wing is studied with the finite element method and the quasi-steady aerodynamic theory. We suppress wing flutter by using piezoelectric materials and electric devices. Two approaches to flutter suppression using piezoelectric materials are presented; an energy-recycling semi-active approach and a negative capacitance approach. To assess their flutter suppression performances, we simulate flutter dynamics of the plate wing to which piezoelectric patches are attached. The critical dynamic pressure drastically increases with our flutter control using a negative capacitor.

압전 작동기를 이용한 유체 유기 진동의 능동 제어 (Active Control of Flow-Induced Vibration Using Piezoelectric Actuators)

  • 한재홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.446-451
    • /
    • 2003
  • This paper presents some examples of active control of flow-induced vibration using piezoelectric actuators. The flutter phenomenon, which is the dynamic instability of structure due to mutual interaction among inertia, stiffness, and aerodynamic forces, may cause catastrophic structural failure, and therefore the active flutter suppression is one of the main objectives of the aeroelastic control. Active flutter control has been numerically and experimentally studied for swept-back lifting surfaces using piezoelectric actuation. A finite element method, a panel aerodynamic method, and the minimum state space realization are involved in the development of the governing equation, which is efficiently used for the analysis of the system and design of control laws with modern control framework. The active control suppressed flow-induced vibrations and extended the flutter speed around by 10%. Another representative flow-induced vibration phenomenon is the oscillation of blunt bodies due to the vortex shedding. In general, it is quite difficult to set up the numerical model because of the strong non-linearity of the vortex shedding structure. Therefore, we applied adaptive positive position feedback controller, which requires no pre-determined model of the plant, and successfully suppressed the flow-induced vibration.

  • PDF

Analytical and experimental study on aerodynamic control of flutter and buffeting of bridge deck by using mechanically driven flaps

  • Phan, Duc-Huynh;Kobayshi, Hiroshi
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.549-569
    • /
    • 2013
  • A passive control using flaps will be an alternative solution for flutter stability and buffeting response of a long suspension bridge. This method not only enables a lightweight economic stiffening girder without an additional stiffness for aerodynamic stability but also avoid the problems from the malfunctions of control systems and energy supply system of an active control by winglets and flaps. A time domain approach for predicting the coupled flutter and buffeting response of bridge deck with flaps is investigated. First, the flutter derivatives of bridge deck and flaps are found by experiment. Next, the derivation of time domain model of self-excited forces and control forces of sectional model is reported by using the rational function approximation. Finally, the effectiveness of passive flap control is investigated by the numerical simulation. The results show that the passive control by using flaps can increase the flutter speed and decrease the buffeting response. The experiment results are matched with numerical ones.

다중 션트회로에 연결된 압전세라믹을 이용한 비선형 패널 플러터의 수동적 억제 (Passive Suppression of Nonlinear Panel Flutter Using Piezoceramics with Multi Resonant Circuits)

  • 문성환;김승조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1204-1209
    • /
    • 2000
  • Many analytical and experimental studies on the active suppression of nonlinear panel flutter by using piezoceramic patch have been carried out. However, these active control methods have a few important problems; a large amount of power is required to operate actuators, and additional apparatuses such as sensor systems and controller are needed. In this study passive suppression schemes for nonlinear flutter of composite panel, which is believed to be more robust suppression system than active control in practical operation, are proposed by using piezoelectric inductor-resistor series shunt circuit. Toward the end, a finite element equation of motion for an electromechanically coupled system is proposed using the Hamilton's principle. To achieve the best damping effect, optimal shape and location of the piezoceramic(PZT) patches are determined by using genetic algorithms. The results clearly demonstrate that the passive damping scheme by using piezoelectric shunt circuit can effectively attenuate the flutter.

  • PDF

An experimental study of flutter and buffeting control of suspension bridge by mechanically driven flaps

  • Phan, Duc-Huynh;Kobayshi, Hiroshi
    • Wind and Structures
    • /
    • 제14권2호
    • /
    • pp.153-165
    • /
    • 2011
  • The alternative solution for flutter and buffeting stability of a long suspension bridge will be a passive control using flaps. This method not only enables a lightweight economic stiffening girder without an additional stiffness for aerodynamic stability but also avoid the problems from the malfunctions of control systems and energy supply system of an active control by winglets and flaps. A mechanically control using flaps for increasing flutter speed and decreasing buffeting response of a suspension bridge is experimentally studied through a two dimensional bridge deck model. The result shows that the flutter speed is increased and the buffeting response is decreased through the mechanical drive of the flaps.

슬라이딩 모드 제어기법을 이용한 유연날개의 플러터 억제 (Flutter Suppression of a Flexible Wing using Sliding Mode Control)

  • 이상욱;석진영
    • 한국항공우주학회지
    • /
    • 제41권6호
    • /
    • pp.448-457
    • /
    • 2013
  • 본 논문에서는 항공기 유연날개의 플러터 억제를 위한 능동 제어시스템을 슬라이딩 모드 제어기법을 이용해 설계하였다. 제어력으로는 유연날개 뒷전 조종면 움직임으로 발생하는 공기력을 이용하였으며, 이를 위해 공탄성 모델, 조종면 작동기 모델, 돌풍 모델로 구성되는 서보 공탄성 모델링을 수행하였다. 플러터 억제를 위한 조종면 제어시스템은 슬라이딩 모드 제어기와 측정값을 이용해 상태 변수를 추정하는 칼만 필터를 조합해 구성하였으며, 수치 시뮬레이션을 통해 유연날개 모델에 대한 플러터 억제 효과를 확인하였다.

Adaptive and Robust Aeroelastic Control of Nonlinear Lifting Surfaces with Single/Multiple Control Surfaces: A Review

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.285-302
    • /
    • 2010
  • Active aeroelastic control is an emerging technology aimed at providing solutions to structural systems that under the action of aerodynamic loads are prone to instability and catastrophic failures, and to oscillations that can yield structural failure by fatigue. The purpose of the aeroelastic control among others is to alleviate and even suppress the vibrations appearing in the flight vehicle subcritical flight regimes, to expand its flight envelope by increasing the flutter speed, and to enhance the post-flutter behavior usually characterized by the presence of limit cycle oscillations. Recently adaptive and robust control strategies have demonstrated their superiority to classical feedback strategies. This review paper discusses the latest development on the topic by the authors. First, the available control techniques with focus on adaptive control schemes are reviewed, then the attention is focused on the advanced single-input and multi-input multi-output adaptive feedback control strategies developed for lifting surfaces operating at subsonic and supersonic flight speeds. A number of concepts involving various adaptive control methodologies, as well as results obtained with such controls are presented. Emphasis is placed on theoretical and numerical results obtained with the various control strategies.