• Title/Summary/Keyword: Active Damping Device

Search Result 38, Processing Time 0.023 seconds

Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics

  • Chen, Lin;Sun, Limin;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.627-643
    • /
    • 2015
  • Negative stiffness, previously emulated by active or semi-active control for cable vibration mitigation, is realized passively using a self-contained highly compressed spring, the negative stiffness device (NSD).The NSD installed in parallel with a viscous damper (VD) in the vicinity of cable anchorage, enables increment of damper deformation during cable vibrations and hence increases the attainable cable damping. Considering the small cable displacement at the damper location, even with the weakening device, the force provided by the NSD-VD assembly is approximately linear. Complex frequency analysis has thus been conducted to evaluate the damping effect of the assembly on the cable; the displacement-dependent negative stiffness is further accounted by numerical analysis, validating the accuracy of the linear approximation for practical ranges of cable and NSD configurations. The NSD is confirmed to be a practical and cost-effective solution to improve the modal damping of a cable provided by an external damper, especially for super-long cables where the damper location is particularly limited. Moreover, mathematically, a linear negative stiffness and viscous damping assembly has proven capability to represent active or semi-active control for simplified cable vibration analysis as reported in the literature, while in these studies only the assembly located near cable anchorage has been addressed. It is of considerable interest to understand the general characteristics of a cable with the assembly relieving the location restriction, since it is quite practical to have an active controller installed at arbitrary location along the cable span such as by hanging an active tuned mass damper. In this paper the cable frequency variations and damping evolutions with respect to the arbitrary assembly location are then evaluated and compared to those of a taut cable with a viscous damper at arbitrary location, and novel frequency shifts are observed. The characterized complex frequencies presented in this paper can be used for preliminary damping effect evaluation of an adaptive passive or semi-active or active device for cable vibration control.

An Active Damping Device for a Distributed Power System (전력시스템을 위한 Active Damping Device)

  • La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • Distributed power systems (DPSs) has been widely used various industrial/military applications due to their various advantages. Furthermore, the "All electric" concept, in conjunction with DC DPS, appears to be more advanced and mature in the AEV(All-Electric Vehicular) industry. Generally, AEV carry many loads with varied functions. However, there may be large pulsed loads with short duty ratios which can affect the normal operation of other loads. In this paper, a converter with spilt capacitors and a simple adaptive controller is proposed as a active damping device to mitigate the voltage transients on the bus. The proposed converter allows the smaller capacitive storage. In addition, the proposed control approach has the advantage of requiring only one sensor and performing both the functions of mitigating the voltage bus transients and maintaining the level of energy stored. The control algorithm has been implemented on a TMS320F2812 Digital Signal Processor (DSP). Simulation and experimental results are presented which verify the proposed control principle and demonstrate the practicality of the circuit topology.

Active Vibration Suppression Using Sweeping Damping Controller (움직이는 감쇠제어기를 이용한 능동진동제어)

  • Bae, Byung-Chan;Kwak, Moon-K.;Lee, Myung-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.293-296
    • /
    • 2005
  • This paper is concerned with the sweeping damping controller for beam. The active damping characteristics can be enhanced by moving the damper along the longitudinal axis. In this paper, the equation of motion for a beam including a sweeping damping controller is derived and its stability is proved by using Lyapunov stability theorem. It is found from the theoretical study that the sweeping damping controller can enhance the active damping characteristics, so that a single damper can suppress all the vibration modes of the beam. To demonstrate the concept of the sweeping damping control, the eddy current damper was applied to a cantilever, where the eddy current damping can move along the axis. The experimental result shows that the sweeping eddy current damper Is an effective device for vibration suppression.

  • PDF

Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAIVS system

  • Nagarajaiah, Satish;Mao, Yuqing;Saharabudhe, Sanjay
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.375-393
    • /
    • 2006
  • Under high velocity, pulse type near source earthquakes semi-active control systems are very effective in reducing seismic response base isolated structures. Semi-active control systems can be classified as: 1) independently variable stiffness, 2) independently variable damping, and 3) combined variable stiffness and damping systems. Several researchers have studied the effectiveness of independently varying damping systems for seismic response reduction of base isolated structures. In this study effectiveness of a combined system consisting of a semi-active independently variable stiffness (SAIVS) device and a magnetorheological (MR) damper in reducing seismic response of base isolated structures is analytically investigated. The SAIVS device can vary the stiffness, and hence the period, of the isolation system; whereas, the MR damper enhances the energy dissipation characteristics of the isolation system. Two separate control algorithms, i.e., a nonlinear tangential stiffness moving average control algorithm for smooth switching of the SAIVS device and a Lyapunov based control algorithm for damping variation of MR damper, are developed. Single and multi degree of freedom systems consisting of sliding base isolation system and both the SAIVS device and MR damper are considered. Results are presented in the form of nonlinear response spectra, and effectiveness of combined variable stiffness and variable damping system in reducing seismic response of sliding base isolated structures is evaluated. It is shown that the combined variable stiffness and variable damping system leads to significant response reduction over cases with variable stiffness or variable damping systems acting independently, over a broad period range.

A Study about Modeling and Control of Dynamic Absorber for Vehicle by Using Active Viscous Damping (능동적 점성감쇠를 이용한 차량용 동적 흡진기의 모델링과 제어에 관한 연구)

  • 김대원;배준영
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.121-130
    • /
    • 1999
  • Generally, A Dynamic Absorber by using Active viscous Damping is highlighted for effective suspension system, such as improved ride comfort and handling in the market. Lately, this system based on the Sky-Hook damper theory is introduced by the name of "Active Dynamic Absorber" to us. This system has an excellent performance in contrast to Passive. Adaptive Dynamic Absorber, besides having low cost components of system, low energy consumption. light weight of system. In this viewpoint. most of car-maker will adopt this system in the near future. For this reason, we developed Dynamic Absorber by using Active viscous Damping which is equipped with continuously variable Dynamic Absorber and Control logic consisting Filter and Estimator. control apparatus of Dynamic Absorber operated by 16-bit microprocessor of high performance. variable device of viscous Damping. G-sensor so on. In this paper. several important points of development procedure for realizing this system will be described with results in which is obtained from experiment by simulation and Full car test in Proving ground. respectively.pectively.

  • PDF

Nonlinear semi-active/passive retrofit design evaluation using incremental dynamic analysis

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Roland, Thomas;Macrae, Gregory A.;Zhou, Cong
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.109-120
    • /
    • 2022
  • Older or damaged structures can require significant retrofit to ensure they perform well in subsequent earthquakes. Supplemental damping devices are used to achieve this goal, but increase base shear forces, foundation demand, and cost. Displacement reduction without increasing base shear is possible using novel semi-active and recently-created passive devices, which offer energy dissipation in selected quadrants of the force-displacement response. Combining these devices with large, strictly passive energy dissipation devices can offer greater, yet customized response reductions. Supplemental damping to reduce response without increasing base shear enables a net-zero base shear approach. This study evaluates this concept using two incremental dynamic analyses (IDAs) to show displacement reductions up to 40% without increasing base shear, more than would be achieved for either device alone, significantly reducing the risk of response exceeding the unaltered structural case. IDA results lead to direct calculation of reductions in risk and annualized economic cost for adding these devices using this net-zero concept, thus quantifying the trade-off. The overall device assessment and risk analysis method presented provides a generalizable proof-of-concept approach, and provides a framework for assessing the impact and economic cost-benefit of using modern supplemental energy dissipation devices.

Integrated cable vibration control system using Arduino

  • Jeong, Seunghoo;Lee, Junhwa;Cho, Soojin;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.695-702
    • /
    • 2019
  • The number of cable-stayed bridges has been increasing worldwide, causing issues in maintaining the structural safety and integrity of bridges. The stay cable, one of the most critical members in cable-stayed bridges, is vulnerable to wind-induced vibrations owing to its inherent low damping capacity. Thus, vibration mitigation of stay cables has been an important issue both in academia and practice. While a semi-active control scheme shows effective vibration reduction compared to a passive control scheme, real-world applications are quite limited because it requires complicated equipment, including for data acquisition, and power supply. This study aims to develop an Arduino-based integrated cable vibration control system implementing a semi-active control algorithm. The integrated control system is built on the low-cost, low-power Arduino platform, embedding a semi-active control algorithm. A MEMS accelerometer is installed in the platform to conduct a state feedback for the semi-active control. The Linear Quadratic Gaussian control is applied to estimate a cable state and obtain a control gain, and the clipped optimal algorithm is implemented to control the damping device. This study selects the magnetorheological damper as a semi-active damping device, controlled by the proposed control system. The developed integrated system is applied to a laboratory size cable with a series of experimental studies for identifying the effect of the system on cable vibration reduction. The semi-active control embedded in the integrated system is compared with free and passive mode cases and is shown to reduce the vibration of stay-cables effectively.

Semi-active Damping Control for Vibration Attenuation: Maximum Dissipation Direction Control

  • Kim, Jeong-Hoon;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.229-234
    • /
    • 2001
  • A practical and effective semi-active on-off control law is developed for vibration attenuation of a natural, multi-degree-of-freedom suspension system, when its operational response mode is available. It does not need the accurate system parameters and dynamics of semi-active actuator. It reduces the total vibratory energy of the system including the work done by external disturbances and the maximum energy dissipation direction of the semi-active control device is tuned to the operational response mode of the structure. The effectiveness of the control law is illustrated with a three degree-of-freedom excavator cabin model.

  • PDF

Vibration mitigation of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Sun, Limin;Jiang, Xiaolu
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.35-53
    • /
    • 2012
  • Mechanical dampers have been proved to be one of the most effective countermeasures for vibration mitigation of stay cables in various cable-stayed bridges over the world. However, for long stay cables, as the installation height of the damper is restricted due to the aesthetic concern, using passive dampers alone may not satisfy the control requirement of the stay cables. In this connection, semi-active MR dampers have been proposed for the vibration mitigation of long stay cables. Although various studies have been carried out on the implementation of MR dampers on stay cables, the optimal damping performance of the cable-MR damper system has yet to be evaluated. Therefore, this paper aims to investigate the effectiveness of MR damper as a semi-active control device for the vibration mitigation of stay cable. The mathematical model of the MR damper will first be established through a performance test. Then, an efficient semi-active control strategy will be derived, where the damping of MR damper will be tuned according to the dynamic characteristics of stay cable, in order to achieve optimal damping of cable-damper system. Simulation study will be carried out to verify the proposed semi-active control algorithm for suppressing the cable vibrations induced by different loading patterns using optimally tuned MR damper. Finally, the effectiveness of MR damper in mitigating multi modes of cable vibration will be examined theoretically.

Performance Investigation of Semi-Active Control Logic to Minimize a Pointing Performance Degradation of On-Board Payload by Chattering Effects (Chattering에 의한 위성 탑재체 지향성능저하 최소화를 위한 반능동제어기법 성능분석)

  • Oh, Hyun-Ung;Choi, Young-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.882-889
    • /
    • 2010
  • Semi-active vibration control is one of the attractive control methods for space application due to its robustness as passive damping system and much higher damping performance than passive system. However, a chattering induced by the sudden variation of damping force at the time of On-Off switching of semi-active control device degrades pointing performance of the on-board payload. In this paper, to enhance the pointing performance of the on-board payload, we proposed a semi-active vibration isolation with a strategy for attenuating chattering effect. Numerical simulation results using simplified analysis model indicated that the proposed semi-active control strategy produced much better isolation performance than the conventional Bang-Bang control semi-active control laws derived from skyhook and LQ theories.