• Title/Summary/Keyword: Active Combustion Control

Search Result 35, Processing Time 0.023 seconds

Effects of Surface Defect Distribution of $SiO_x(x{\le}2)$ Plates on Chemical Quenching ($SiO_x(x{\le}2)$ 플레이트의 표면 결함 분포가 화학 소염에 미치는 영향)

  • Kim, Kyu-Tae;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.328-336
    • /
    • 2005
  • Effects of surface defect distribution on flame instability during flame-surface interaction are experimentally investigated. To examine the chemical quenching phenomenon, we prepared thermally grown silicon oxide plates with well-defined defect density. Ion implantation was used to control the number of defects, i.e. oxygen vacancies. In an attempt to preferentially remove the oxygen atoms from silicon dioxide surface, argon ions with low energy level from 3keV to 5keV were irradiated at the incident angle of $60^{\circ}C$. Compositional and structural modification of $SiO_2$ induced by low-energy $Ar^+$ ion irradiation has been characterized by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). The analysis shows that as the ion energy increases, the number of structural defect also increases and non-stoichiometric condition of $SiO_x(x{\le}2)$ plates is enhanced. From the quenching distance measurements, we found out that when the surface temperature is under $300^{\circ}C$, the quenching distance decreases on account of reduced heat loss; as the surface temperature increases over $300^{\circ}C$, however, quenching distance increases despite reduced heat loss effect. Such aberrant behavior is caused by heterogeneous chemical reaction between active radicals and surface defect sites. The higher defect density, the larger quenching distance. This results means that chemical quenching is governed by radical adsorption and can be parameterized by the oxygen vacancy density on the surface.

  • PDF

A Study on the Application of Phase Change Material for Electric Vehicle Battery Thermal Management System using Dymola (전기자동차 배터리팩 열관리시스템에서 상변화물질 적용에 관한 고찰)

  • Choi, Chulyoung;Choi, Woongchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1889-1894
    • /
    • 2017
  • Global automobile manufacturers are developing electric vehicles (EVs) to eliminate the pollutant emissions from internal combustion vehicles and to minimize fossil fuel consumptions for the future generations. However, EVs have a disadvantage of shorter traveling distance than that of conventional vehicles. To answer this shortfall, more batteries are installed in the EV to satisfy the consumer expectation for the driving range. However, as the energy capacity of the battery mounted in the EV increases, the amount of heat generated by each cell also increases. Naturally, a better battery thermal management system (BTMS) is required to control the temperature of the cells efficiently because the appropriate thermal environment of the cells greatly affects the power output from the battery pack. Typically, the BTMS is divided into an active and a passive system depending on the energy usage of the thermal management system. Heat exchange materials usually include gas and liquid, semiconductor devices and phase change material (PCM). In this study, an application of PCM for a BTMS was investigated to maintain an optimal battery operating temperature range by utilizing characteristics of a PCM, which can accumulate large amounts of latent heat. The system was modeled using Dymola from Dassault Systems, a multi-physics simulation tool. In order to compare the relative performance, the BTMS with the PCM and without the PCM were modeled and the same battery charge/discharge scenarios were simulated. Number of analysis were conducted to compare the battery cooling performance between the model with the aluminum case and PCM and the model with the aluminum case only.

Development of Antifreeze Concentration Control device for Solar Heat Energy System (태양열에너지 시스템용 부동액 농도 제어 장치의 개발)

  • Seo, Choong-Kil;Won, Joung Wun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • The gases emitted from internal combustion engines using fossil fuels are causing many social problems, such as environmental pollution, global warming, and adverse health effects on the human body. In recent years, the demand for renewable energy has increased, and government policy support and research and development are also active. In the collecting part of a solar energy system, which is widely used at home, propylene glycol (PG) (anti-freeze), as a heating medium, is mixed with water at a fixed value of 50%, and the heat is transferred to the collecting part at subzero temperatures. On the other hand, when leakage occurs in the heat medium in the heat collecting part, supplemental water is supplied to the solar heat collecting part due to the characteristics of the solar heat system, so that the concentration of antifreeze in the replenishing water becomes low. As a result, the temperature of the solar heat collecting part is lowered resulting in a frost wave, which causes economic damage. The purpose of this study was to develop a device capable of controlling the antifreeze concentration automatically in response to a temperature drop to prevent freezing of the heat collecting part generated in the solar energy system. The electrical conductivity of the H2O component was larger than that of PG, and the resistance increased with decreasing temperature. The PG concentration control values of 40, 50, and 60% should be controlled through calibration with a PG concentration of 39.6, 50.7, and 60.1%.

A Study on the Safety Management Methods of Micro-Gas Engine Combined Heat and Power System (소형 가스엔진 열병합발전 시스템의 안전관리 방안에 관한 연구)

  • Kim, So-Hyun;Kim, Min-Woo;Lee, Eun-Kyung;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.76-89
    • /
    • 2018
  • The distribution of the combined heat and power system is active as a solution to the instability of energy supply and environmental pollution caused by continuous industrial development. In Korea, the safety standards for combined heat and power system using a gas engine are insufficient therefore the study on this is needed. In this study, the safety performance and structural/material assessment items of domestic and international standards applied to the combined heat and power system were analyzed to carry out a standardization study on safety performance applicable to 20 kW gas engine combined heat and power system. In addition, the safety performance assessment (plan) of the gas engine combined heat and power system was derived by performing risk analysis and risk assessment using HAZOP. Assessment items include engine ignition systems related to safety performance, piping tight performance, watering and temperature rise performance, combustion performance, electrical efficiency, thermal efficiency, overall efficiency and humidity performance. Gas and water pipes, gas control and shut-off valves, durability, heat resistance, and cold resistance of metal or non-metallic materials related to the structure and materials of the gas engine combined heat and power systems.

Effect of SO2 on NOx Removal Performance in Low Temperature Region over V2O5-Sb2O3/TiO2 SCR Catalyst Washcoated on the Metal Foam (저온영역에서 메탈폼에 코팅된 V2O5-Sb2O3/TiO2 SCR 촉매의 NOx 저감성능에 미치는 SO2 영향에 관한 연구)

  • Na, Woo-Jin;Park, Young-Jin;Bang, Hyun-Seok;Bang, Jong-Seong;Park, Hea-Kyung
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.132-138
    • /
    • 2016
  • The emission of SO2 is inevitable in case of combustion of most fossil fuels except LNG in commercial power plant which has a bad effect on the durability of SCR catalyst. To develop a low temperature SCR catalyst which has a high NOx removal performance and excellent durability to SO2, V2O5/TiO2 catalysts were prepared by coating on the metal foam substrate with the impregnation amount of Sb2O3 as promotor. This study has evaluated the NOx removal performance and the durability to SO2 on a laboratory scale atmospheric reactor and analyzed the properties of the prepared catalysts by means of porosimeter, BET, SEM (scanning electron microscope), EDX (energy dispersive x-ray spectrometer), XPS (X-ray photoelectron spectroscopy). It was found that the surface area of catalyst increased with the impregnation amount of Sb2O3 and the NOx removal performance showed the highest value at the 2 wt% impregnation of Sb2O3. This results was considered to be due to the optimum active site on the catalyst surface. And also, Sb2O3 impregnated catalysts presented that NOx removal performance was maintained despite the exposure to SO2 for 5 hours. Therefore it was confirmed that metal foam SCR catalyst for low temperature could be manufactured with the optimum control of Sb2O3 impregnation according to the SO2 presence or not.