• Title/Summary/Keyword: Active Camera

Search Result 298, Processing Time 0.025 seconds

Robust Gaze-Fixing of an Active Vision System under Variation of System Parameters (시스템 파라미터의 변동 하에서도 강건한 능동적인 비전의 시선 고정)

  • Han, Youngmo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.3
    • /
    • pp.195-200
    • /
    • 2012
  • To steer a camera is done based on system parameters of the vision system. However, the system parameters when they are used might be different from those when they were measured. As one method to compensate for this problem, this research proposes a gaze-steering method based on LMI(Linear Matrix Inequality) that is robust to variations in the system parameters of the vision system. Simulation results show that the proposed method produces less gaze-tracking error than a contemporary linear method and more stable gaze-tracking error than a contemporary nonlinear method. Moreover, the proposed method is fast enough for realtime processing.

Measure and Analysis of Open-Close Frequency of Mouth and Eyes for Sleepiness Decision (졸음 판단을 위한 눈과 입의 개폐 빈도수 측정 및 분석)

  • Sung, Jae-Kyung;Choi, In-Ho;Park, Sang-Min;Kim, Yong-Guk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.89-97
    • /
    • 2014
  • In this paper, we propose real-time program that measure open-close frequency of mouth and eyes to detect drowsiness of a driver. This program detects a face to the CCD camera image using OpenCV library. Then that extracts each area using CDF for eye detection and Active Contour for mouth detection based on detected face. This system measures each frequency of Open-Close using extracted area data of eyes and mouth. We propose foundation technique how to perform sleepiness decision of users based on measurement data.

Radar Sensor System Concept for Collision Avoidance of Smart UAV (무인기 충돌방지를 위한 레이다 센서 시스템 설계)

  • Kwag, Young-Kil;Kang, Jung-Wan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.203-207
    • /
    • 2003
  • Due to the inherent nature of the low flying UAV, obstacle detection is a fundamental requirement in the flight path to avoid the collision from obstacles as well as manned aircraft. In this paper, a preliminary sensor requirements of an obstacle detection system for UAV in low-altitude flight are analyzed, and the automated obstacle detection sensor system is proposed assessing both passive and active sensors such as EO camera, IR, Laser radar, microwave and millimeter radar. In addition, TCAS (Traffic Alert and Collision Avoidance System) are reviewed for the collision avoidance of the manned aircraft system. It is suggested that small-sized radar sensor is the best candidate for the smart UAV because an active radar can provide the real-time informations on range and range rate in the all-weather environment. However, an important constraints on small UAV should be resolved in terms of accommodation of the mass, volume, and power allocated in the payload of the UAV system design requirements.

  • PDF

Segmentation using Snakes on Digital Endoscopic Image (Snake를 이용한 디지털 내시경 영상의 분할)

  • Yoon, S.W.;Kim, J.H.;Choi, J.J.;Yoon, Y.S.;Lee, J.Y.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2715-2717
    • /
    • 2002
  • Image segmentation is an essential technique of image analysis. In spite of the issues in contour initialization and boundary concavities, active contour models(snakes) are popular and successful methods for the segmentation. In this paper, we present a new active contour model, GGF snake, for segmentation of endoscopic image. The GGF snake is less sensitive to contour initialization and ensures high accuracy, large capture range, and fast CPU time for computing external force. It was observed that the GGF snake produced more reasonable results in various image types, such as simple synthetic images, commercial digital camera images, and endoscopic images than previous snakes did.

  • PDF

BRACKETT LINE-BASED MBH ESTIMATORS AND HOT DUST TEMPERATURES OF TYPE 1 AGNs FROM AKARI SPECTROSCOPIC DATA

  • KIM, DOHYEONG;IM, MYUNGSHIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.443-445
    • /
    • 2015
  • We provide results of near-infrared (NIR) spectroscopic observations of 83 nearby (0.002< z <0.48) and bright (K <14 mag) type 1 active galactic nuclei (AGNs). For the observations, we used the Infrared Camera (IRC) on AKARI allowing us to obtain the spectrum in the rarely studied spectral range of $2.5-5.0{\mu}m$. The $2.5-5.0{\mu}m$ spectral region suffers less dust extinction than ultra violet (UV) or optical wavelength ranges, and contains several important emission lines such as $Br{\beta}$ ($2.63{\mu}m$), $Br{\alpha}$ ($4.05{\mu}m$), and polycyclic aromatic hydrocarbon (PAH; $3.3{\mu}m$). The sample is selected from the bright quasar surveys of Palomar Green and SNUQSO, and AGNs with black hole (BH) masses estimated from reverberation mapping method. We measure the Brackett line properties for 11 AGNs, which enable us to derive BH mass estimators and investigate circum-nuclear environments. Moreover, we perform spectral modeling to fit the hot and warm dust components by adding photometric data from SDSS, 2MASS, WISE, and ISO to the AKARI spectra, and estimate hot and warm dust temperatures of ~1100K and ~220 K, respectively.

Vision-based Ground Test for Active Debris Removal

  • Lim, Seong-Min;Kim, Hae-Dong;Seong, Jae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.279-290
    • /
    • 2013
  • Due to the continuous space development by mankind, the number of space objects including space debris in orbits around the Earth has increased, and accordingly, difficulties of space development and activities are expected in the near future. In this study, among the stages for space debris removal, the implementation of a vision-based approach technique for approaching space debris from a far-range rendezvous state to a proximity state, and the ground test performance results were described. For the vision-based object tracking, the CAM-shift algorithm with high speed and strong performance, and the Kalman filter were combined and utilized. For measuring the distance to a tracking object, a stereo camera was used. For the construction of a low-cost space environment simulation test bed, a sun simulator was used, and in the case of the platform for approaching, a two-dimensional mobile robot was used. The tracking status was examined while changing the position of the sun simulator, and the results indicated that the CAM-shift showed a tracking rate of about 87% and the relative distance could be measured down to 0.9 m. In addition, considerations for future space environment simulation tests were proposed.

Visualization and classification of hidden defects in triplex composites used in LNG carriers by active thermography

  • Hwang, Soonkyu;Jeon, Ikgeun;Han, Gayoung;Sohn, Hoon;Yun, Wonjun
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.803-812
    • /
    • 2019
  • Triplex composite is an epoxy-bonded joint structure, which constitutes the secondary barrier in a liquefied natural gas (LNG) carrier. Defects in the triplex composite weaken its shear strength and may cause leakage of the LNG, thus compromising the structural integrity of the LNG carrier. This paper proposes an autonomous triplex composite inspection (ATCI) system for visualizing and classifying hidden defects in the triplex composite installed inside an LNG carrier. First, heat energy is generated on the surface of the triplex composite using halogen lamps, and the corresponding heat response is measured by an infrared (IR) camera. Next, the region of interest (ROI) is traced and noise components are removed to minimize false indications of defects. After a defect is identified, it is classified as internal void or uncured adhesive and its size and shape are quantified and visualized, respectively. The proposed ATCI system allows the fully automated and contactless detection, classification, and quantification of hidden defects inside the triplex composite. The effectiveness of the proposed ATCI system is validated using the data obtained from actual triplex composite installed in an LNG carrier membrane system.

Compact Elliptical Galaxies Hosting Active Galactic Nuclei in Isolated Environments

  • Rey, Soo-Chang;Oh, Kyuseok;Kim, Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.69.2-69.2
    • /
    • 2021
  • We present the discovery of rare active galactic nuclei (AGNs) in nearby (z<0.05) compact elliptical galaxies (cEs) located in isolated environments. Using spectroscopic data from the Sloan Digital Sky Survey (SDSS) Data Release 12, four AGNs were identified based on the optical emission-line diagnostic diagram. SDSS optical spectra of AGNs show the presence of distinct narrow-line emissions. Utilizing the black hole (BH) mass-stellar velocity dispersion scaling relation and the correlation between the narrow L([OIII])/L(Hβ) line ratio and the width of the broad Hα emission line, we estimated the BH masses of the cEs to be in the range of 7×105-8×107 solar mass. The observed surface brightness profiles of the cEs were fitted with a double Sérsic function using the Dark Energy Camera Legacy Survey r-band imaging data. Assuming the inner component as the bulge, the K-band bulge luminosity was also estimated from the corresponding Two Micron All Sky Survey images. We found that our cEs follow the observed BH mass-stellar velocity dispersion and BH mass-bulge luminosity scaling relations, albeit there was a large uncertainty in the derived BH mass of one cE. In view of the observational properties of BHs and those of the stellar populations of cEs, we discuss the proposition that cEs in isolated environments are bona fide low-mass early-type galaxies (i.e., a nature origin).

  • PDF

Flow Visualization of Oscillation Characteristics of Liquid and Vapor Flow in the Oscillating Capillary Tube Heat Pipe

  • Kim, Jong-Soo;Kim, Ju-Won;Jung, Hyun-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1507-1519
    • /
    • 2003
  • The two-phase flow patterns for both non-loop and loop type oscillating capillary tube heat pipes (OCHPs) were presented in this study. The detailed flow patterns were recorded by a high-speed digital camera for each experimental condition to understand exactly the operation mechanism of the OCHP. The design and operation conditions of the OCHP such as turn number, working fluid, and heat flux were varied. The experimental results showed that the representative flow pattern in the evaporating section of the OCHP was the oscillation of liquid slugs and vapor plugs based on the generation and growth of bubbles by nucleate boiling. As the oscillation of liquid slugs and vapor plugs was very speedy, the flow pattern changed from the capillary slug flow to a pseudo slug flow near the annular flow. The flow of short vapor-liquid slug-train units was the flow pattern in the adiabatic section. In the condensing section, it was the oscillation of liquid slugs and vapor plugs and the circulation of working fluid. The oscillation flow in the loop type OCHP was more active than that in the non-loop type OCHP due to the circulation of working fluid in the OCHP. When the turn number of the OCHP was increased, the oscillation and circulation of working fluid was more active as well as forming the oscillation wave of long liquid slugs and vapor plugs in the OCHP. The oscillation flow of R-142b as the working fluid was more active than that of ethanol and the high efficiency of the heat transfer performance of R -142b was achieved.

Tracking Performance Test of Polymer Insulator with Salt Solution which is added Surface Active Agent (계면활성제가 첨가된 염수용액에 따른 폴리머 애자의 트래킹 성능 평가)

  • Cho, Han-Goo;Lee, Un-Yong;Han, Dong-Hee;Kang, Sung-Hwa;Choi, In-Hyuk;Lim, Kee-Joe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.62-67
    • /
    • 2005
  • Recently, polymer insulators that are used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination that lead to dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. Aging test to estimate life property of polymer insulator is executed through several international standard such as IEC 61109 and CEA tracking wheel test, but is not getting clear conclusion yet. There are two methods in the diagnosis method of polymer insulator such as off-line and on-line. The diagnosis methods in off-line are external condition analysis by the eye, contaminant analysis on surface, surface analysis, pollution withstand voltage test, power frequency flashover voltage test, lightning impulse flashover test, tensile fracture load test and flexural load test. Polymer material is also investigated it's tracking resistance by adding surface active agent in IEC 587. In this paper, the tracking performance of polymer insulator with salt solution which is added surface active agent. The diagnosis of insulator sample has been analyzed by leakage current and visual examination, STRI guide and thermal image camera.