• 제목/요약/키워드: Activation polarization

검색결과 130건 처리시간 0.022초

S1P1 Regulates M1/M2 Polarization toward Brain Injury after Transient Focal Cerebral Ischemia

  • Gaire, Bhakta Prasad;Bae, Young Joo;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.522-529
    • /
    • 2019
  • M1/M2 polarization of immune cells including microglia has been well characterized. It mediates detrimental or beneficial roles in neuroinflammatory disorders including cerebral ischemia. We have previously found that sphingosine 1-phospate receptor subtype 1 ($S1P_1$) in post-ischemic brain following transient middle cerebral artery occlusion (tMCAO) can trigger microglial activation, leading to brain damage. Although the link between $S1P_1$ and microglial activation as a pathogenesis in cerebral ischemia had been clearly demonstrated, whether the pathogenic role of $S1P_1$ is associated with its regulation of M1/M2 polarization remains unclear. Thus, this study aimed to determine whether $S1P_1$ was associated with regulation of M1/M2 polarization in post-ischemic brain. Suppressing $S1P_1$ activity with its functional antagonist, AUY954 (5 mg/kg, p.o.), attenuated mRNA upregulation of M1 polarization markers in post-ischemic brain at 1 day and 3 days after tMCAO challenge. Similarly, suppressing $S1P_1$ activity with AUY954 administration inhibited M1-polarizatioin-relevant $NF-{\kappa}B$ activation in post-ischemic brain. Particularly, $NF-{\kappa}B$ activation was observed in activated microglia of post-ischemic brain and markedly attenuated by AUY954, indicating that M1 polarization through $S1P_1$ in post-ischemic brain mainly occurred in activated microglia. Suppressing $S1P_1$ activity with AUY954 also increased mRNA expression levels of M2 polarization markers in post-ischemic brain, further indicating that $S1P_1$ could also influence M2 polarization in post-ischemic brain. Finally, suppressing $S1P_1$ activity decreased phosphorylation of M1-relevant ERK1/2, p38, and JNK MAPKs, but increased phosphorylation of M2-relevant Akt, all of which were downstream pathways following $S1P_1$ activation. Overall, these results revealed $S1P_1$-regulated M1/M2 polarization toward brain damage as a pathogenesis of cerebral ischemia.

전기화학적 부동태화에 의한 동관의 내식성 개선 연구 (Improvement of Corrosion Resistance for Copper Tube by Electrochemical Passivation)

  • 민성기;김경태;황운석
    • Corrosion Science and Technology
    • /
    • 제10권4호
    • /
    • pp.125-130
    • /
    • 2011
  • This study was performed to improve the corrosion resistance and the stability of passive film on copper tube by potentiostatic polarization method in synthetic tap water. Formation of passive film was carried out by anodic potentiostatic polarization at various passivation potentials and passivation times in 0.1 M NaOH solution. Stability of passive film and corrosion resistance was evaluated by self-activation time, ${\tau}_0$ from passive state to active state on open-circuit state in 0.1 M NaOH solution. Addition of polyphosphate in NaOH solution prolonged the self-activation time and improved the corrosion resistance, and the addition of 5 ppm polyphosphate was most effective. It was also observed that better corrosion resistance was obtained by potentiostatic polarization at 1.0 V (vs. SCE) than at any other passivation potentials. Passivated copper tube showed perfect corrosion resistance for the immersion test in synthetic tap water showing that the anodic potentiostatic polarization treatment in 0.1 M NaOH with 5 ppm polyphosphate solution would be effective in improving the corrosion resistance and preventing the blue water problem.

Al-4.5%Mg-0.6%Mn 알루미늄 합금의 정전위 시간 변수에 따른 손상거동 평가 (Evaluation on Damage Behavior of Al-4.5%Mg-0.6%Mn Al Alloy with Potentiostatic Experiment Time)

  • 김성종;우용빈;한민수;장석기
    • 해양환경안전학회지
    • /
    • 제18권6호
    • /
    • pp.569-576
    • /
    • 2012
  • 일반적으로 중성용액 하에서 알루미늄 합금은 부동태피막($Al_2O_3$$Al_2O_3{\cdot}3H_2O$)을 형성한다. 그러나, 해수 환경에서 염소이온이 표면에 생성된 부동태 피막을 파괴하여 부식이 발생하게 된다. 본 연구에서는 해수환경 하에서 부식 문제점을 해결하기 위해 Al-4.5%Mg-0.6%Mn 알루미늄 합금에 대하여 정전위 방식 기술을 적용하였다. 분극실험결과, 개로전위보다 귀한 전위에서는 활성 용해 반응이 나타났으며 개로전위 보다 비한 전위에서는 용존산소 환원에 의한 농도 분극과 활성화 분극이 관찰되었다. 정전위 실험결과, 농도 분극에서 활성화 분극으로 전환되는 전위부터 적용 시간이 증가할수록 전착물이 많이 생성되었으며, 부분적으로 전착물과 모재의 계면사이에서 틈부식이 관찰되었다. 전체적으로 정전위 양극분극실험시, 활성용해반응이 발생하여 정전위 방식 기술을 적용하기 어려운 반면, 정전위 음극분극 실험시 방식 전위인 농도분극 범위내에서 적용 시간을 고려하여 최적 방식 조건을 -1.1 V~-0.75 V로 규명하였다.

Metabolic influence on macrophage polarization and pathogenesis

  • Thapa, Bikash;Lee, Keunwook
    • BMB Reports
    • /
    • 제52권6호
    • /
    • pp.360-372
    • /
    • 2019
  • Macrophages play an essential role not only in mediating the first line of defense but also in maintaining tissue homeostasis. In response to extrinsic factors derived from a given tissue, macrophages activate different functional programs to produce polarized macrophage populations responsible for inducing inflammation against microbes, removing cellular debris, and tissue repair. However, accumulating evidence has revealed that macrophage polarization is pivotal in the pathophysiology of metabolic syndromes and cancer, as well as in infectious and autoimmune diseases. Recent advances in transcriptomic and metabolomic studies have highlighted the link between metabolic rewiring of macrophages and their functional plasticity. These findings imply that metabolic adaption to their surrounding microenvironment instructs activation of macrophages with functionally distinct phenotypes, which in turn probably leads to the pathogenesis of a wide spectrum of diseases. In this review, we have introduced emerging concepts in immunometabolism with focus on the impact on functional activation of macrophages. Furthermore, we have discussed the implication of macrophage plasticity on the pathogenesis of metabolic syndromes and cancer, and how the disease microenvironment manipulates macrophage metabolism with regard to the pathophysiology.

ALBC3 합금의 수소과전압 현상을 이용한 캐비테이션과 전기화학적 특성 (Cavitation and Electrochemical Characteristics Using Hydrogen Overpotential Method for ALBC3 Alloy)

  • 박재철;이승준;김성종
    • 한국표면공학회지
    • /
    • 제44권6호
    • /
    • pp.277-283
    • /
    • 2011
  • In this study, the cavitation test and electrochemical experiments were conducted for ALBC3(Cu-Al) alloy that has an excellent corrosion resistance and cavitation characteristic in sea water. Based on the ASTMG32 regulation, the cavitation test was performed with the cavitation and cavitation erosion tester using piezoelectric effect. The electrochemical characteristics are evaluated with potentiostatic experiments in activation polarization potential range. As a result, cavitation damage is increased proportionally to temperature and time at $30{\mu}m$ amplitude. It is appeared that acceleration period in weight loss presented over 6 hours under the cavitation environment in sea water. In addition, corrosion damages were observed at the potential range of -3.2~-1.4 V as the result of potensiostatic experiments during 12 hours in activation polarization potential range.

Empirical Equation을 이용한 고분자전해질 연료전지의 전압 손실에 대한 연구 (Study of Voltage Loss on Polymer Electrolyte Membrane Fuel Cell Using Empirical Equation)

  • 김기석;구영모;김준범
    • 공업화학
    • /
    • 제29권6호
    • /
    • pp.789-798
    • /
    • 2018
  • 고분자전해질 연료전지(PEMFC)의 성능을 예측할 수 있는 empirical equation의 역할이 중요하게 대두되고 있다. 본 연구에서는 polarization curve에서 activation loss, ohmic loss, mass transfer loss 영역을 분리하였고, 현재까지 개발된 model 중 Kim의 model과 Hao의 model을 선정하여 각 영역의 fitting을 시행하였다. 온도, 압력, 산소 농도 및 막 두께를 운전변수로 설정하여 조건 변화에 대한 각 loss의 변화를 비교하였다. 기존 model은 전반적으로 좋은 fitting 정확도를 보였지만, 분리된 loss 영역에서는 부정확한 fitting 결과를 보이기도 하였다. 연료전지 성능 예측의 정확도를 개선하기 위하여 converge coefficient를 도입한 새로운 model을 제안하였다. 본 연구에서 제안한 model을 연료전지 성능 예측에 적용한 경우에 신뢰도 평가에서 개선된 결과를 얻을 수 있었다.

열자극 탈분극전류 방법에 의한 BaTiO3의 분극 특성 연구 (Study on Polarization Properties of BaTiO3by Using Thermally Stimulated Depolarization Current)

  • 송호준;이용렬;박영준
    • 한국재료학회지
    • /
    • 제12권8호
    • /
    • pp.613-616
    • /
    • 2002
  • The polarization properties of $BaTiO_3$ were investigated by using thermally stimulated depolarization current (TSDC) technique. Two peaks were observed at about 400 K (peak A) and 435 K (peak B) from TSDC spectra obtained from the temperature range of 280-500 K. Peak A shows a sharp decrease of TSDC due to extinction of spontaneous polarization above the phase transition temperature of $BaTiO_3$. The values of activation energy of peak A and peak B were calculated to be 0.70 eV and 0.87 eV respectively. From the results of TSDC measurement with a variation of polarizing electric field strength, we found that saturation of total current of TSDC was started from 3kV/cm. However, the amount of total current of TSDC was not affected by the variation of polarizing time.

Ag925의 전기화학적 특성에 미치는 네오디뮴 함량의 영향 (Effect of Neodymium concentration on electrochemical properties of 925 silver)

  • 신병현;정승진;정원섭
    • 한국표면공학회지
    • /
    • 제54권2호
    • /
    • pp.71-76
    • /
    • 2021
  • Ag925, silver with added copper, is popular alloy due to its low price. However, it has a difficult to use because of the low corrosion resistance. In various alloys, neodymium (Nd) works as an element to improve corrosion resistance by reacting with interstitial elements in the alloy. When 1.5 wt. % Neodymium was added to Ag925, the potential on the activated polarization in a potentiodynamic polarization test was increased from -0.15 V to -0.05 V. Ag925 with added neodymium showed the passivation after activation polarization. But When the potential increased around 50 mV, the current density is increased to 3 × 10-3. Ag925 with the 1.5 wt. % Nd had the low corrosion rate.

Endotoxins of Enteric Pathogens Are Chemotactic Factors for Human Neutrophils

  • Islam, Laila N.;Nabi, A.H.M. Nurun;Ahmed, K. Mokim;Sultana, Novera
    • BMB Reports
    • /
    • 제35권5호
    • /
    • pp.482-487
    • /
    • 2002
  • Early activation of human peripheral blood polymorphonuclear neutrophils is characterized by their morphological changes from spherical to polarized shapes. The endotoxins from enteric pathogens (S. dysenteriae type 1, V. cholerae Inaba 569B, S. typhimurium, and K. pneumoniae) were assessed by their ability to induce morphological polarization of the neutrophils as measures of early activation. Phagocytic activity, adhesion, chemokinetic locomotion, and nitroblue tetrazolium (NBT) dye-reduction ability measured the later activation of the cells. Neutrophils showed distinct morphological polarization in suspension over a wide range of concentrations of these endotoxins when were compared with those that were induced by the standard chemotactic factor, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP). It was discovered that all of the endotoxins induced locomotor responses in neutrophils in suspension that were dose- and time-dependent. The optimum concentration for the endotoxins of S. dysenteriae, V. cholerae, and K. pneumoniae was 1 mg/ml in which 71, 69, and 66% of the neutrophils were polarized. However, the S. typhimurium dose was 2 mg/ml in which 50% of the cells responded. Neutrophils that were stimulated with endotoxins also showed increased random locomotion (p<0.005) through cellulose nitrate filters, but an enhanced adhesion of the cells to glass surfaces (p<0.03). These are important functions of these cells to reach and phagocytose damaged cells, as well as invading microorganisms. Interestingly, the endotoxins had a highly-significant inhibitory effect upon the proportions of neutrophils phagocytosing opsonized yeast (p<0.01) with a small number of yeast that were engulfed by the cells (p<0.02). Further, endotoxin-treated cells showed an enhanced ability to reduce NBT dye (p<0.03). Therefore, we concluded that endotoxins of enteric pathogens are neutrophil chemotactic factors.

치아색으로 코팅된 NiTi 와이어의 전기화학적 특성 (Electrochemical Characteristics of Tooth Colored NiTi Wire)

  • 김원기;조주영;최한철;이호종
    • Corrosion Science and Technology
    • /
    • 제9권5호
    • /
    • pp.223-232
    • /
    • 2010
  • NiTi alloy has been used for orthodontic wire due to good mechanical properties, such as elastic strength, friction resistance, and high corrosion resistance. Recently, these wire were coated by polymer and ceramic materials for aesthetics. The purpose of this study was to investigate electrochemical characteristics of tooth colored NiTi wire using various instruments. Wires (round type and rectangular type) were used, respectively, for experiment. Polymer coating was carried out for wire. Specimen was investigated with optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and energy dispersive x-ray spectroscopy (EDS). The corrosion properties of the specimens were examined using potentiodynamic tests (potential range of -1500 ~ 2000 mV) and electrochemical impedance spectroscopy (frequency range of 100 kHz ~ 10 mHz) in a 0.9 % NaCl solution by potentiostat. From the results of polarization behavior, the passive region of non-coated NiTi wire showed largely, whereas, the passive region of curved NiTi wire showed shortly in anodic polarization curve. In the case of coated NiTi wire, pitting and crevice corrosion occurred severely at interface between non-coated and coated region. From the results of EIS, polarization resistance(Rp) value of non-coated round and rectangular NiTi wire at curved part showed $5.10{\times}10^5{\Omega}cm^2$ and $4.43{\times}10^5{\Omega}cm^2$. lower than that of coated NiTi wire. $R_p$ of coated round and rectangular NiTi wire at curved part showed $1.31{\times}10^6{\Omega}cm^2$ and $1.19{\times}10^6{\Omega}cm^2$.