• Title/Summary/Keyword: Activation carbon

Search Result 657, Processing Time 0.021 seconds

Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation

  • Lee, Hye-Min;Kim, Hong-Gun;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.71-76
    • /
    • 2014
  • Activated carbon nanofibers (ACNF) were prepared from polyacrylonitrile (PAN)-based nanofibers using $CO_2$ activation methods with varying activation process times. The surface and structural characteristics of the ACNF were observed by scanning electron microscopy and X-ray diffraction, respectively. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. As experimental results, many holes or cavernous structures were found on the fiber surfaces after the $CO_2$ activation as confirmed by scanning electron microscopy analysis. Specific surface areas and pore volumes of the prepared ACNFs were enhanced within a range of 10 to 30 min of activation times. Performance of the porous PAN-based nanofibers as an electrode for electrical double layer capacitors was evaluated in terms of the activation conditions.

A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes

  • Kim, Jung-Ae;Park, In-Soo;Seo, Ji-Hye;Lee, Jung-Joon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • The process parameter in optimized KOH alkali activation of soft carbon series coke material in high purity was set with DOE experiments design. The activated carbon was produced by performing the activation process based on the set process parameters. The specific surface area was measured and pore size was analyzed by $N_2$ absorption method for the produced activated carbon. The surface functional group was analyzed by Boehm method and metal impurities were analyzed by XRF method. The specific surface area was increased over 2,000 $m^2/g$ as the mixing ratio of activation agent increased. The micro pores in $5{\sim}15{\AA}$ and surface functional group under 0.4 meq/g were obtained. The contents of the metal impurity in activated carbon which is the factor for reducing the electrochemical characteristics was reduced less than 100 ppm through the cleansing process optimization. The electrochemical characteristics of activated carbon in 38.5 F/g and 26.6 F/cc were checked through the impedance measuring with cyclic voltammetry scan rate in 50~300 mV/s and frequency in 10 mHz ~100 kHz. The activated carbon was made in the optimized activation process conditions of activation time in 40 minutes, mixing ratio of activation agent in 4.5 : 1.0 and heat treatment temperature over $650^{\circ}C$.

Kinetic Studies on Physical and Chemical Activation of Phenolic Resin Chars

  • Agarwal, Damyanti;Lal, Darshan;Tripathi, V.S.;Mathur, G.N.
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.126-132
    • /
    • 2003
  • Granular Activated Carbon (GAC) has been proven to be an excellent material for many industrial applications. A systematic study has been carried out of the kinetics of physical as well as chemical activation of phenolic resin chars. Physical activation was carried out using $CO_2$ and chemical activation using KOH as activating agent. There are number of factors which influence the rate of activation. The activation temperature and residence time at HTT varied in the range $550{\sim}1000^{\circ}C$ and $\frac{1}{2}{\sim}8$ hrs respectively. Kinetic studies show that the rate of chemical activation is 10 times faster than physical activation even at much lower temperature. Above study show that the chemical activation process is suitable to prepare granular activated carbon with very high surface area i.e.$ 2895\;m^2/g$ in short duration of time i.e. 1 to 2 hrs at lower temperature i.e. $750^{\circ}C$ from phenolic resins.

  • PDF

Electromagnetic Interference Shielding Properties of CO2 Activated Carbon Black Filled Polymer Coating Materials

  • Hu, Quanli;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.298-302
    • /
    • 2008
  • Carbon blacks could be used as the filler for the electromagnetic interference (EMI) shielding. The poly vinyl alcohol (PVA) and polyvinylidene fluoride (PVDF) were used as the matrix for the carbon black fillers. Porous carbon blacks were prepared by $CO_2$ activation. The activation was performed by treating the carbon blacks in $CO_2$ to different degrees of burnoff. During the activation, the enlargement of pore diameters, and development of microporous and mesoporous structures were introduced in the carbon blacks, resulting in an increase of extremely large specific surface areas. The porosity of carbon blacks was an increasing function of the degree of burn-off. The surface area increased from $80\;m^2/g$ to $1142\;m^2/g$ and the total pore volume increased from $0.14073\;cc{\cdot}g^{-1}$ to $0.9343\;cc{\cdot}g^{-1}$. Also, the C=O functional group characterized by aldehydes, ketones, carboxylic acids and esters was enhanced during the activation process. The EMI shielding effectiveness (SE) of raw N330 carbon blacks filled with PVA was about 1 dB and those of the activated carbon blacks increased to the values between 6 and 9 dB. The EMI SE of raw N330 carbon blacks filled with PVDF was about 7 dB and the EMI SE increased to the range from 11 to 15 dB by the activation.

Effect of Activation Temperature on CO2 Capture Behaviors of Resorcinol-based Carbon Aerogels

  • Moon, Cheol-Whan;Kim, Youngjoo;Im, Seung-Soon;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.57-61
    • /
    • 2014
  • In this study, carbon aerogel (CA) was synthesized using a soft-template method, and the optimum conditions for the adsorption of carbon dioxide ($CO_2$) by the carbon aerogel were evaluated by controlling the activation temperature. KOH was used as the activation agent at a KOH/CA activation ratio of 4:1. Three types of activated CAs were synthesized at activation temperatures of $800^{\circ}C$(CA-K-800), $900^{\circ}C$(CA-K-900), and $1000^{\circ}C$(CA-K-1000), and their surface and pore characteristics along with the $CO_2$ adsorption characteristics were examined. The results showed that with the increase in activation temperature from 800 to $900^{\circ}C$, the total pore volume and specific surface area sharply increased from 1.2165 to $1.2500cm^3/g$ and 1281 to $1526m^2/g$, respectively. However, the values for both these parameters decreased at temperatures above $1000^{\circ}C$. The best $CO_2$ adsorption capacity of 10.9 wt % was obtained for the CA-K-900 sample at 298 K and 1 bar. This result highlights the importance of the structural and textural characteristics of the carbon aerogel, prepared at different activation temperatures on $CO_2$ adsorption behaviors.

Oxidation Kinetics of Carbon Fibers

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Isotropic pitch based carbon fibers were exposed to isothermal oxidation in carbon dioxide gas to study the activation kinetics under the temperature of 800~$1100^{\circ}C$. The kinetic equation $f=1-{\exp}(-at^b)$ was introduced and the constant b was obtained in the range of 0.92~1.25. It was shown that the activated carbon fiber shows the highly specific surface area (SSA) when the constant b comes close to 1. The activation kinetics were evaluated by the reaction-controlling regime (RCR) according to changes of the apparent activation energy with changes of the conversion. It was observed that the activation energies increase from 47.6 to 51.2 kcal/mole with the conversion increasing from 0.2 to 0.8. It was found that the pores of the activated carbon fiber under the chemical reaction were developed well through the fiber.

  • PDF

Study on the Manufacture and Characteristics of Pitch-Based Activated Carbon Fibers Using Steam Activation (수증기 유량제어에 따른 피치계 활성탄소섬유 비표면적 특성에 대한 연구)

  • Hae-Reum Shin;Seung-Jun Yeo;Woo-Seung Noh;Man-Tae Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1333-1339
    • /
    • 2023
  • To produce activated carbon fibers, the process is carried out through either physical activation method or chemical activation method. In this study, we present the results regarding the characteristics of activated carbon fibers manufactured under various conditions through the quantitative control of steam. The yield after activation indicates a decreasing trend with the increase in steam quantity and activation time. Additionally, specific surface area characteristics exhibit variations based on activation time and steam flow rate. The SEM analysis results reveal that higher steam flow rates lead to the presence of both mesopores and macropores on the surface of activated carbon fibers (ACF).

The Effect of Potassium Hydroxide on the Porosity of Phenol Resin-based Activated Carbon Fiber

  • Jin, Hang-Kyo
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.161-165
    • /
    • 2006
  • Activated carbon fiber could be prepared at 973 K by catalytic activation using potassium hydroxide. Phenol resin fiber (Kynol) was impregnated with potassium hydroxide ethanol solution, carbonized and activated at 973 K, resulting in activated carbon fibers with different porosities. The potassium hydroxide accelerated the activation of the fiber catalytically to form narrow micropore preferentially in carbon dioxide atmosphere. The narrow micropore volume of 0.3~0.4 cc/g, total pore volume of 0.3~0.8 cc/g, mean pore width of 0.5~0.7 nm was obtained in the range of 20~50% burnoff.

  • PDF

Preparation and Properties of Pelletized Activated Carbons Using Coconut Char and Coal-Tar Pitch

  • Yang, Seung-Chun;Lee, Young-Seak;Kim, Jun-Ho;Lim, Chul-Kyu;Park, Young-Tae
    • Carbon letters
    • /
    • v.2 no.3_4
    • /
    • pp.176-181
    • /
    • 2001
  • A series of activated carbons were prepared from coconut shells and coal-tar pitch binder by physical activation with steam in this study. The effect of variable processes such as activation temperature, activation time and ratio of mixing was investigated for optimizing those preparation parameters. The activation processes were carried out continuously. The nitrogen adsorption isotherms at 77 K on pellet-shaped activated carbons show the same trend of Type I by IUPAC classification. The average pore sizes were about 19-21${\AA}$. The specific surface areas ($S_{BET}$) of pellet typed ACs increased with increasing the activation temperature and time. Specific surface area of AC treated for 90 min at temperature $900^{\circ}C$ was 1082 $m^2/g$. The methylene blue numbers continuously increased with increasing the activation temperature and time. On the other hand, iodine numbers highly increased till activation time of 60 min, but the rate of increase of iodine numbers decreased after that time. This indicates that new micropores were created and the existing micropores turned into mesopores and macropores because of increased reactivity of carbon surface and $H_2O$.

  • PDF

Preparation and Characterization of Sisal Fiber-based Activated Carbon by Chemical Activation with Zinc Chloride

  • Lu, Xincheng;Jiang, Jianchun;Sun, Kang;Xie, Xinping
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.103-110
    • /
    • 2014
  • Sisal fiber, an agricultural resource abundantly available in china, has been used as raw material to prepare activated carbon with high surface area and huge pore volume by chemical activation with zinc chloride. The orthogonal test was designed to investigate the influence of zinc chloride concentration, impregnation ratio, activation temperature and activation time on preparation of activated carbon. Scanning electron micrograph, Thermo-gravimetric, $N_2$-adsorption isotherm, mathematical models such as t-plot, H-K equation, D-R equation and BJH methods were used to characterize the properties of the prepared carbons and the activation mechanism was discussed. The results showed that $ZnCl_2$ changed the pyrolysis process of sisal fiber. Characteristics of activated carbon are: BET surface area was $1628m^2/g$, total pore volume was $1.316m^3/g$ and ratio of mesopore volume to total pore volume up to 94.3%. These results suggest that sisal fiber is an attractive source to prepare mesoporous high-capacity activated carbon by chemical activation with zinc chloride.