• Title/Summary/Keyword: Activation Products

Search Result 639, Processing Time 0.027 seconds

Photochemical and Thermal Solvolysis of Picolyl Chlorides

  • Shim Sang Chul;Choi Seung Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.30-33
    • /
    • 1982
  • Photochemical and thermal solvolysis of 2,3,4-picolyl chlorides (2,3,4-PC) were studied in amine solvents and the results were correlated with the electronic structures calculated by PPP-SCF-MO CI method. Activation parameters show that the thermal solvolysis of PC is $S_N2$ type rcaction. The rates of thermal reaction in pyridine or t-butylamine solvent decrease in the order of 2-PC > 3-PC > 4-PC. These results are consistent with the predictions based on the electron densities of picolyl chlorides. In photosolvolysis, the same products as those of thermal reactions were obtained. The results indicate that photochemical solvolysis undergoes through heterolytic cleavage. Relative quantum yields of photosolvolysis of 2,3,4-picolyl chlorides in t-butylamine solvent were determined to be 0.73, 1, and 0.50 respectively. These results are in good agreement with the electron densities of the excited triplet state of picolyl chlorides.

Honokiol induces apoptosis in activated rat hepatic stellate cells via cytochrome c release and caspase activation

  • Park, Eun-Jeon;Zhao, Yu-Zhe;Lee, Sung-Hee;Kang, Joo-Yi;Kim, Young-Ho;Sohn, Dong-Hwan
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.101.1-101.1
    • /
    • 2003
  • The therapeutic goal in liver fibrosis is to reverse fibrosis and selective clearance of activated hepatic stellate cells (HSCs), which playa central role in liver fibrogenesis, by apoptosis might be essential during resolution of fibrosis. Past several years we screened for natural products which mediate apoptosis in activated HSCs, and among the candidates honokiol, isolated from Magnoliae Cortex, was found to induce apoptotic death in activated rat HSCs in a dose- and time-dependent manner at the concentration between 12.5 microM and 50 microM. (omitted)

  • PDF

Autophagy down-regulates NLRP3-dependent inflammatory response of intestinal epithelial cells under nutrient deprivation

  • Yun, Yewon;Baek, Ahruem;Kim, Dong-Eun
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.260-265
    • /
    • 2021
  • Dysregulation of inflammation induced by noninfectious stress conditions, such as nutrient deprivation, causes tissue damage and intestinal permeability, resulting in the development of inflammatory bowel diseases. We studied the effect of autophagy on cytokine secretion related to intestinal permeability under nutrient deprivation. Autophagy removes NLRP3 inflammasomes via ubiquitin-mediated degradation under starvation. When autophagy was inhibited, starvation-induced NLRP3 inflammasomes and their product, IL-1β, were significantly enhanced. A prolonged nutrient deprivation resulted in an increased epithelial mesenchymal transition (EMT), leading to intestinal permeability. Under nutrient deprivation, IL-17E/25, which is secreted by IL-1β, demolished the intestinal epithelial barrier. Our results suggest that an upregulation of autophagy maintains the intestinal barrier by suppressing the activation of NLRP3 inflammasomes and the release of their products, including pro-inflammatory cytokines IL-1β and IL-17E/25, under nutrient deprivation.

Anti-Inflammatory Herbal Extracts and Their Drug Discovery Perspective in Atopic Dermatitis

  • Jae-Won Lee;Eun-Nam Kim;Gil-Saeng Jeong
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.25-37
    • /
    • 2024
  • Atopic dermatitis (AD) is an allergic disorder characterized by skin inflammation. It is well known that the activation of various inflammatory cells and the generation of inflammatory molecules are closely linked to the development of AD. There is accumulating evidence demonstrating the beneficial effects of herbal extracts (HEs) on the regulation of inflammatory response in both in vitro and in vivo studies of AD. This review summarizes the anti-atopic effects of HEs and its associated underlying mechanisms, with a brief introduction of in vitro and in vivo experiment models of AD based on previous and recent studies. Thus, this review confirms the utility of HEs for AD therapy.

Smart Factory Activation Plan through Analysis of Smart Factory Promotion Status and Introduction Plan Data

  • Seong-Hoon Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.229-234
    • /
    • 2024
  • A smart factory is defined as a cutting-edge, intelligent factory that integrates all production processes from product planning to sales with information and communication technology. Through these factories, each company produces customized products with minimal cost and time. The smart factory promotion project in Korea has produced positive results even in difficult environments such as the COVID-19 situation. Through the transition to a smart manufacturing production system, the competitiveness of small and medium-sized businesses has been greatly strengthened, including increased productivity and reduced costs. This study was based on surveyed data conducted by organizations related to smart factory promotion in 2020. Significant contents and major characteristics that emerged from the surveyed data were inferred and described. Since the meaningful contents reflect the reality of the company, more efficient promotion of smart factories will be possible in the future.

A Study of Ozonation Characteristics of Bis(2-chloroethyl) Ether (Bis(2-chloroethyl) Ether (BCEE)의 오존산화 특성에 관한 연구)

  • Lee, Cheal-Gyu;Kim, Moon-Chan
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.610-615
    • /
    • 2010
  • In this study ozonation of bis(2-chloroethyl) ether (BCEE) in aqueous solution was performed in a laboratory scale batch reacter. The ozonation process of BCEE was carried out by bubbling ozone at the bottom of reactor containing the BCEE solution. Ozonation was almost complete after 80 min with an ozone concentration of $50{\pm}10mg/L$. Ozonation treatment efficiencies of BCEE were evaluated in terms of $BOD_5$, $COD_{Cr}$, and TOC. In the ozonation of BCEE a 62.79% decrease of the $COD_{Cr}$ and a 57.25% decrease of the TOC lead to biodegradable by-products ($BOD_5/COD_{Cr}$ = 0.39). The results of this research show that wastewaters containing non-biodegradable compounds, such as BCEE can be successfully treated by ozonation followed by bio-treatment. The pseudo first-order rate constants of the ozonation was $2.00{\times}10^{-4}sec^{-1}$ and the activation energy was $10.02kcal{\cdot}mol^{-1}$ at $30^{\circ}C$.

Enterocarpam-III Induces Human Liver and Breast Cancer Cell Apoptosis via Mitochondrial and Caspase-9 Activation

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Pompimon, Wilart
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1833-1837
    • /
    • 2015
  • An aristolactam-type alkaloid, isolated from Orophea enterocarpa, is enterocarpam-III (10-amino-2,3,4,6-tetramethoxyphenanthrene-1-carboxylic acid lactam). It is cytotoxic to various human and murine cancer cell lines; however, the molecular mechanisms remain unclear. The aims of this study were to investigate cytotoxic effects on and mechanism (s) of human cancer cell death in human hepatocellular carcinoma HepG2 and human invasive breast cancer MDA-MB-231 cells compared to normal murine fibroblast NIH3T3 cells. Cell viability was determined by MTT assay to determine $IC_{10}$, $IC_{20}$ and $IC_{50}$ levels, reactive oxygen species (ROS) production with 2',7'-dichlorohydrofluorescein diacetate and the caspase-3, -8 and -9 activities using specific chromogenic (p-nitroaniline) tetrapeptide substrates, viz., DEVD-NA, IETD-NA and LEHD-NA and employing a microplate reader. Mitochondrial transmembrane potential (MTP) was measured by staining with 3, 3'-dihexyloxacarbocyanine iodide ($DiOC_6$) and using flow cytometry. The compound was cytotoxic to HepG2 and MDA-MB-231 cells with the $IC_{50}$ levels of $26.0{\pm}4.45$ and $51.3{\pm}2.05{\mu}M$, respectively. For murine normal fibroblast NIH3T3 cells, the $IC_{50}$ concentration was $81.3{\pm}10.1{\mu}M$. ROS production was reduced in a dose-response manner in HepG2 cells. The caspase-9 and -3 activities increased in a concentration-dependent manner, whereas caspase-8 activity did not alter, indicating the intrinsic pathway activation. Enterocarpam-III decreased the mitochondrial transmembrane potential (MTP) dose-dependently in HepG2 cells, suggesting that the compound induced HepG2 cell apoptosis via the mitochondrial pathway. In conclusion, enterocarpam-III inhibited HepG2 and MDA-MB-231 cell proliferation and induced human HepG2 cells to undergo apoptosis via the intrinsic (mitochondrial) pathway and induction of caspase-9 activity.

Construction of the Detection System of Endocrine Disrupters using Yeast Two-Hybrid System with Human Estrogen Receptor ligand Binding Domain and Co-activators (Human Estrogen Receptor Ligand Binding Domain (hER LBD)과 Co-activator로 구성된 효모 Two-Hybrid System을 이용한 내분비계장애물질 검출계의 구축)

  • 이행석;조은민;류재천
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.3
    • /
    • pp.175-182
    • /
    • 2002
  • Endocrine disruptors (EDs) are the chemicals that affect endocrine systems through activation or inhibition of steroid hormone response. It is necessary to have a good system to evaluate rapidly and accurately endocrine-disrupting activities of suspected chemicals and their degradation products. The key targets of EDs are nuclear hormone receptors, which bind to steroid hormones and regulate their gene transcription. We constructed a co-expression system of Gal4p DNA binding domain (DBD)- ligand binding domain of human estrogen receptor $\alpha$ or $\beta$, and Gal4p transactivation domain (TAD)-co-activator AIB-1, SRC-1 or TIF-2 in Saccharomyces cerevisiae with a chromosome-integrated lacZ reporter gene under the control of CYC1 promoter and Gal4p binding site (GAL4 upstream activating sequence, GAL4$_{UAS}$). Expression of this reporter gene was dependent on the presence of estrogen or EDs in the culture medium. We found that the two-hybrid system with combination of the hER$\beta$ LBD and co-activator SRC-1 was most effective in the xenoestrogen-dependent induction of reporter activity. The extent of transcriptional activation by those chemicals correlated with their estrogenic activities measured by other assay systems, indicating that this assay system is efficient and reliable for measuring estrogenic activity. The data in this research demonstrated that the yeast detection system using steroid hormone receptor and co-activator is a useful tool for identifying chemicals that interact with steroid receptors.s.

  • PDF

Novel Disease Model of Chronic Neutrophilic Leukemia: by Using the Tet-off System

  • Park, Jun-Hong;Lee, Young-Soon;Ryoo, Zae-Young
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.107-107
    • /
    • 2003
  • The activation of protooncogenes or the inactivation of their gene products may be a specific and effective functional study for human neoplasia. To examine this possibility, we have used the tetracycline regulatory system to generate transgenic mice that conditionally express the HccR-2 protooncogene in vivo. The new human cervical cancer protooncogene (HccR-2) was detected from cervical cancer cell line. To elucidate its biological functions, we generated transgenic mice that expressed the HccR-2 gene. The sustained expression of the HccR-2 transgene culminated chronic neutrophilic leukemia (CNL). CNL is a rare chronic myeloproliferative disorder that presents as a sustained, mature neutrophilic leukocytosis with few or no circulating immature granulocytes, the absence of peripheral blood monocytosis, basophilia, or eosinophilia, and infiltration of neutrophils at the liver, spleen and kidney. Mice expressing the HccR-2 and tetracycline-transactivating protein (tTa) transgene were found to have altered myeloid development that was characterized by increased percentages of mature neutrophil and band form neutrophil in the peripheral blood, liver and spleen. Activation of the transgene causes CNL. In our model, expression of HccR-2 transgene mice was similar in many respects to the human CNL. This model will be valuable not only for investigating the biological properties of the HccR-2 and other protooncogenes in vivo but also for analyzing the mechanism involved in the progression of CNL.

  • PDF

Evaluation of the Genetic Toxicity of Synthetic Chemicals [XII] -in vitro Chromosomal Aberration Assay with 11 Chemicals in Chinese Hamster Lung Fibroblast-

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.2
    • /
    • pp.99-107
    • /
    • 2004
  • The validation of many synthetic chemicals that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, the regulation and evaluation of the chemical hazard playa very important role to environment and human health. The clastogenicity of 11 synthetic chemicals was evaluated in Chinese hamster lung (CHL) fibroblast in vitro. Benzoyl chloride (CAS No. 98-88-4) induced chromosomal aberrations with statistical significance at the concentration of 31-123 $\mug/ml$ and 43 $\mug/ml$ in the absence and presence of S-9 metabolic activation system, respectively. 2-Propyn-l-o1 (CAS No. 107-19-7) and 2-Phenoxy ethanol (CAS No. 122-99-6) revealed clastogenicity only at the highest concentration in the presence of S-9 mixture. However, 1-naphthol (CAS No. 90-15-3) which is one of the most cytotoxic chemical among 11 chemicals tested revealed no clastogenicity both in the presence and absence of S-9 metabolic activation system. From the results of chromosomal aberration assay with 11 synthetic chemicals in CHL fibroblast in vitro, Benzoyl chloride (CAS No. 98-88-4), 2-Propyn-l-01 (CAS No. 107-19-7) and 2-Phenoxy ethanol (CAS No. 122-99-6) revealed positive clastogenic results in this study.

  • PDF