• Title/Summary/Keyword: Activated material

Search Result 745, Processing Time 0.03 seconds

Screening of Eu3+-and Tb3+-Activated Phosphors for PDP in the System of CaO-Gd2O3-Al2O3 (CaO-Gd2O3-Al2O3계에서의 PDP용 Eu3+와 Tb3+ 활성 형광체의 탐색)

  • Park, Sang-Mi;Kim, Chang-Hae;Park, Hui-Dong;Jang, Ho-Gyeom;Park, Jun-Taek
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.4
    • /
    • pp.336-345
    • /
    • 2002
  • In this study, we have screened $Eu^{3+}$- and $Tb^{3+}$-activated candidate phosphors for PDP in the sys-tems of CaO-Gd$_2$O$_3$-Al$_2$O$_3$ by combinatorial chemistry and investigated the synthetic temperature, optimum com-position and luminescent properties about the candidate phosphors. To construct the emission intensity library by VUV PL, we have synthesized 210 different compositional samples using a polymerized-complex method. Good luminescent samples were identified by X-ray diffraction method. $Ca_$\alpha$$G$d_{0.95-$\alpha$-$\beta$}Al_$\beta$O_$\delta$$ : Eu(0.02< $\alpha$+$\beta$ <0.04) phos-phors screened as a red phosphor have good color purity than commercial phosphor. In the candidate phosphors of CaGdAl$_3O_7$ : Tb, Ca$Al_{12}O_{19}$ : Tb, Gd$_4$Al$_2O_9$ : Tb, and Gd$_3Al_5O_{12}$ : Tb CaGdAl$_3O_7$ : Tb, and Ca$Al_{12}O_{19}$ : Tb have shorter decay time than commercial phosphor.

Characteristics of the Tactile Brainwave on the Surface of Interior Finishing Materials - Focusing on the measurement of 'α-wave against β wave' - (실내마감재 표면에 감각하는 촉각적 뇌파특성 - '베타파에 대한 알파파' 측정 중심으로 -)

  • Yeo, Mi;Lee, Chang No
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.2
    • /
    • pp.59-69
    • /
    • 2016
  • This study aimed to understand the importance of applying finishing materials into interior space, and to add meaning to the creation of functional space, associated interior finishing materials with brain science. To achieve this purpose, brainwave(EEG) experiment was conducted. The brainwave appearing when sensing the surface of interior finishing materials with hands was measured. The locations of the electrode were FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, CZ, FZ, and PZ and in addition to these, AFZ was added. Eight(8) kinds of finishing materials: metallic material, film paper, lumbar, stone, glass, silk wallpaper, fabric, and paint were used to measure '${\alpha}$-wave against ${\beta}$ wave.' As a result, it was found that the most activated finishing material in term of relaxation was film paper, followed by metallic, glass, paint, fabric, stone, lumbar, and silk wallpaper. To explain in light of this, (1) '${\alpha}$-wave against ${\beta}$ wave' was the most activated at ch1-FP1 and ch2-FP2, and at ch17-AFZ and ch19-FZ, which indicated that metopic-prefrontal lobe showed the highest activation in relaxation. Film paper, among the finishing materials, showed the highest increase in relaxation. (2) In general, '${\alpha}$-wave against ${\beta}$ wave' relaxation was inhibited at ch13-T3 and ch14-T4, and at ch15-T5 and ch16-T6 and the arousal in the temporal lobe was prominent. Silk wallpaper, among the finishing materials, showed the highest arounsal effect. As a result of measuring the superficial touch on the silk wallpaper, which was regarded as the most rough material among the eight finishing materials, the arousal effect of ${\alpha}$-wave against ${\beta}$-wave, among the brainwave characteristics, was found to be the highest. (3) to judge from the scope of this experiment regarding the tactile sensation over the finishing materials, it is considered that the brainwave reaction sometimes appeared contrastive depending on whether the surface was smooth or rough and there also appeared a difference in relaxation and arousal reaction of the brainwave depending on whether the surface was hot or cold, but the sensation on the surface texture was often evaluated differently depending on who you were. For this reason, this study has some limitations.

Effect of Nitrogen Plasma Surface Treatment of Rice Husk-Based Activated Carbon on Electric Double-Layer Capacitor Performance (질소 플라즈마 표면처리가 쌀겨 기반 활성탄소의 전기 이중층 커패시터 성능에 미치는 영향)

  • Lee, Raneun;Kwak, Cheol Hwan;Lee, Hyeryeon;Kim, Seokjin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.71-77
    • /
    • 2022
  • To increase biomass utilization, rice husk-based activated carbon (RHAC) followed by nitrogen plasma surface treatment was prepared and the electric double-layer capacitor performance was investigated. Through nitrogen plasma surface treatment, up to 2.17% of nitrogen was introduced to the surface of RHAC, and in particular the sample reacted for 5 min with nitrogen plasma showed dominant formation of pyrrolic/pyridine N functional groups. In addition, mesopores were formed on the RHAC material by the removal of silica, and the surface roughness of the carbon material increased by nitrogen plasma surface treatment, resulting in the formation of many micropores. As a result of cyclic voltammetry measurement, at a scan rate of 5 mV/s, the specific capacitance of the RHAC treated with nitrogen plasma increased up to 200 F/g, showing an 80.2% improvement compared to that of using untreated RHAC (111 F/g). This is attributed to the synergetic effect of the introduction of pyrrolic/pyridine-based nitrogen functional groups and the increase of the micropore volume on the surface of the carbon material. This study has a positive effect on the environment in terms of recycling waste resources and using plasma surface treatment.

Biochemical Characteristics of an Alanine Racemase from Xanthomonas oryzae pv. oryzae

  • Kang, Han-Chul;Yoon, Sang-Hong;Lee, Chang-Muk;Koo, Bon-Sung
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.4
    • /
    • pp.231-237
    • /
    • 2011
  • A gene encoding a putative alanine racemase in Xanthomonas. oryzae pv. oryzae was cloned, expressed and characterized. Expression of the cloned gene was performed in Escherichia coli BL21(DE3)pLys using a pET-21(a) vector harbouring $6{\times}histidine$ tag. Purification of the recombinant alanine racemase by affinity chromatography resulted in major one band by sodium dodecyl sulfate polyacryl amide gel electrophoresis analysis, showing about 45 kDa of molecular weight. The alanine racemase gene, cloned in this experiment, appears to be constitutively expressed in X. oryzae, as analyzed by reverse transcriptase polymerase chain reaction. The enzyme was the most active toward L-alanine and secondly D-alanine, showing a racemic reaction, thus the enzyme is considered as an alanine racemase. The enzyme was considerably activated by addition of pyridoxal-5-phosphate (PLP), showing that 75% increase in activity was observed at 0.3 mM, compared with control. D-Cysteine as well as L-cysteine significantly inhibited the enzyme activity. The inhibitions by cysteines were more prominent in the absence of PLP, showing 9 and 5% of control activity at 2 mM of addition, respectively. The enzyme was the most active at pH 8.0 and more stable at alkaline pHs than acidic pH condition.

Biological function of CpSlt2, an ortholog of the cell wall integrity (CWI) MAPK of Saccharomyces cerevisiae, in the chestnut blight fungus Cryphonectria parasitica

  • So, Kum-Kang;Ko, Yo-Han;Chun, Jeesun;Kim, Jung-Mi;Kim, Dae-Hyuk
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.11-11
    • /
    • 2018
  • Cryphonectria parasitica, chestnut blight fungus, has a characteristic of decreasing pathogenicity when infected with Cryphonectria hypovirus 1. C. parasitica is known to be one of the most representative model systems used to observe the interaction between viruses, plants and fungi. The mitogen-activated protein kinase (MAPK) pathway, which is well conserved in various organisms ranging from yeast to humans, functions in relaying phosphorylation-dependent signals within MAPK cascades to diverse cellular functions involved in the regulation of pheromone, cell wall integrity, and osmotolerance in filamentous fungi. Several genes in the MAPK pathway were revealed to be regulated by hypovirus, or to be involved in pathogenicity in C. parasitica. Among these pathways, the CWI pathway has aroused interest because CpBck1, an ortholog of yeast Bck1 (a CWI MAPKKK), was previously reported to be involved in cell wall integrity and sectorization. Interestingly, sporadic sectorization was observed in the CpBck1 mutant and sectored phenotypes were stably inherited in the progeny that were successively transferred from sectored mycelia. In this study, we analyzed the biological function of CpSlt2, downstream gene of CpBck1, to confirm whether the sectorization phenomenon occurred in the specific single gene or cell wall integrity (CWI) pathway. As results, the CpSlt2-null mutant exhibited marked changes in colonial growth, near absence of conidiation and aerial hyphae, abnormal pigmentation, CWI-related phenotypic defects, and dramatically impaired virulence. As cultivation of the mutant strains progressed, the majority of the colonies showed sporadic sectorization and mycelia from the sectored area stably maintained the sectored phenotype. These results suggest that the unique sectorization is CWI pathway-specific, though the components in the same CWI pathway have common and specific functions.

  • PDF

Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe) (합성 금속-유기 골격체 NH2-MIL-101(Fe)를 이용한 염료의 흡착 및 광분해 제거)

  • Lee, Joon Yeob;Choi, Jeong-Hak
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.611-620
    • /
    • 2018
  • In this study, a metal-organic framework (MOF) material $NH_2$-MIL-101(Fe) was synthesized using the solvothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and surface area measurements. The XRD pattern of the synthesized $NH_2$-MIL-101(Fe) was similar to the previously reported patterns of MIL-101 type materials, which indicated the successful synthesis of $NH_2$-MIL-101(Fe). The FT-IR spectrum showed the molecular structure and functional groups of the synthesized $NH_2$-MIL-101(Fe). The UV-visible absorbance spectrum indicated that the synthesized material could be activated as a photocatalyst under visible light irradiation. FE-SEM and TEM images showed the formation of hexagonal microspindle structures in the synthesized $NH_2$-MIL-101(Fe). Furthermore, the EDS spectrum indicated that the synthesized material consisted of Fe, N, O, and C elements. The synthesized $NH_2$-MIL-101(Fe) was then employed as an adsorbent and photocatalyst for the removal of Indigo carmine and Rhodamine B from aqueous solutions. The initial 30 min of adsorption for Indigo carmine and Rhodamine B without light irradiation achieved removal efficiencies of 83.6% and 70.7%, respectively. The removal efficiencies thereafter gradually increased with visible light irradiation for 180 min, and the overall removal efficiencies for Indigo carmine and Rhodamine B were 94.2% and 83.5%, respectively. These results indicate that the synthesized MOF material can be effectively applied as an adsorbent and photocatalyst for the removal of dyes.

A study on the BAC pilot plant in the Duk-san water works (덕산(德山) 정수장(淨水場)에서의 BAC Pilot plant에 관한 연구(硏究))

  • Lee, Sang-Bong;Kim, Dong-Youn;Lim, Jung-A;Lee, Won-Gwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.97-107
    • /
    • 1995
  • Today a conventional water treatment system has many problems. The ozone/GAC process, sometimes termed Biological Activated Carbon(BAC), appeared to be effective for the removal of soluble organic matters in the drinking water. The water quality of Nak-dong river in Pusan, generally shows BDOC 30-40% and NBDOC 60-70%. The pilot plant installed at the Duk-san water works that was been largest treatability(1,650,000ton/day) in Pusan. A experimental water in the pilot plant made use of the water after sand-filteration. Following results are drawn from this study. Initial adsorption velocity($DOC/DOC_o/T$) in the pure adsorption of GAG had a 0.0225, it's velocity changed to 0.006 after ozone added and the optimum ozone dose ranged of $1.4-2.0mgO_3/L$. A experimental water in the pilot plant composed with humic material(78%). Humic material composed with humic acid(20%) and fulvic acid(56%), and it's rate changed to 18 and 50% respectively after ozone added. DOC constantly decreased in the EBCTs and removal efficieny in the 15min of EBCT was 45-50%. It showed the largest removal rate of BDOC in the EBCT 5 and among the season, characteristics of removal varied. The HPC distributed over $10^6-10^7CFU/cm^3$ in the bed depth and among the season, distribution of HPC were differential.

  • PDF

Electrical characteristics of Au/3C-SiC/Si/Al Schottky, diode (Au/3C-SiC/Al 쇼터키 다이오드의 전기적 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.65-65
    • /
    • 2009
  • High temperature silicon carbide Schottky diode was fabricated with Au deposited on poly 3C-SiC thin film grown on p-type Si(100) using atmospheric pressure chemical vapor deposition. The charge transport mechanism of the diode was studied in the temperature range of 300 K to 550 K. The forward and reverse bias currents of the diode increase strongly with temperature and diode shows a non-ideal behavior due to the series resistance and the interface states associated with 3C-SiC. The charge transport mechanism is a temperature activated process, in which, the electrons passes over of the low barriers and in turn, diode has a large ideality factor. The charge transport mechanism of the diode was analyzed by a Gaussian distribution of the Schottky barrier heights due to the Schottky barrier inhomogeneities at the metal-semiconductor interface and the mean barrier height and zero-bias standard deviation values for the diode was found to be 1.82 eV and $s_0$=0.233 V, respectively. The interface state density of the diode was determined using conductance-frequency and it was of order of $9.18{\times}10^{10}eV^{-1}cm^{-2}$.

  • PDF

A Study on the Analysis of Gel Images of Genes and Molecules (유전자 및 물질의 젤 영상 분석에 관한 연구)

  • 김영원;전병환
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.33-36
    • /
    • 2001
  • With all the researches to define human genom and to look for some new bio-activated material in the bio-technology field recently, it is more highly needed to analyse DNA or so called Material than ever before. First, the lanes are extracted based on histogram analysis and projection technique. And then three other approaches are applied for band extraction: SB, RG-1, and RG-2. In SB method, a search line is set dividing each lane equally and vertically to find peaks and valleys. And according to them, minimum enclosing rectangle of each band is determined. In RC-1 approach, on the other hand, band areas are extracted by region growing with the peaks as seeds, avoiding the overlap with the neighboring bands. In RC-2 approach, peaks and valleys are searched in two lines that trisect the lane vertically, and the pair of peaks in the same band are determined, and then used to grow the region. To compare the accuracy of the three suggested methods, we measure the location and amount of bands. The result shows that the mean deviation of the location is 0.06, 0.03, and 0.01 for SB, RG-1, and RC-2 respectively. And the mean deviation of the amount of bands is 0.08, 0.05, and 0.02 for SB, RG-1, and RG-2 respectively. In conclusion, the RG-2 method suggested in this paper appears to be the most reliable on the degree of the accuracy in measuring the location and amount of bands

  • PDF

Deposition Temperature and Annealing Temperature Dependent Structural and Electrical Properties of Ga-doped ZnO on SiC (퇴적 온도와 열처리에 따른 SiC에 퇴적된 Ga 도핑된 ZnO의 구조 및 전기적 특성)

  • Lee, Jung-Ho;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.121-124
    • /
    • 2012
  • The characteristics of Ga-doped zinc oxide (GZO) thin films deposited at different deposition temperatures (TS~250 to $550^{\circ}C$) on 4H-SiC have been investigated. Structural and electrical properties of GZO thin film on n-type 4H-SiC(0001) were investigated by using x-ray diffraction(XRD), atomic force microscopy(AFM), Hall effect measurement, barrier height from I-V curve and Auger electron spectroscopy(AES). XRD $2\theta$ scan shows GZO thin film has preferential orientation with c-axis perpendicular to SiC substrate surface. The lowest resistivity ($\sim1.9{\times}10^{-4}{\Omega}cm$) was observed for the GZO thin film deposited at $400^{\circ}C$. As deposition temperature increases, barrier height between GZO and SiC was increased. Whereas, resistivity of GZO thin films as well as barrier height between GZO and SiC were increased after annealing process in air atmosphere. It has been found that the c-axis oriented crystalline quality as well as the relative amount of activated Ga3+ ions and oxygen vacancy may affect the electrical properties of GZO films on SiC.