DOI QR코드

DOI QR Code

Effect of Nitrogen Plasma Surface Treatment of Rice Husk-Based Activated Carbon on Electric Double-Layer Capacitor Performance

질소 플라즈마 표면처리가 쌀겨 기반 활성탄소의 전기 이중층 커패시터 성능에 미치는 영향

  • Lee, Raneun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kwak, Cheol Hwan (Institute of Carbon Fusion Technology (InCFT), Chungnam National University) ;
  • Lee, Hyeryeon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Seokjin (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 이란은 (충남대학교 응용화학공학과) ;
  • 곽철환 (충남대학교 탄소융복합기술연구소) ;
  • 이혜련 (충남대학교 응용화학공학과) ;
  • 김석진 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2021.12.15
  • Accepted : 2022.01.04
  • Published : 2022.02.10

Abstract

To increase biomass utilization, rice husk-based activated carbon (RHAC) followed by nitrogen plasma surface treatment was prepared and the electric double-layer capacitor performance was investigated. Through nitrogen plasma surface treatment, up to 2.17% of nitrogen was introduced to the surface of RHAC, and in particular the sample reacted for 5 min with nitrogen plasma showed dominant formation of pyrrolic/pyridine N functional groups. In addition, mesopores were formed on the RHAC material by the removal of silica, and the surface roughness of the carbon material increased by nitrogen plasma surface treatment, resulting in the formation of many micropores. As a result of cyclic voltammetry measurement, at a scan rate of 5 mV/s, the specific capacitance of the RHAC treated with nitrogen plasma increased up to 200 F/g, showing an 80.2% improvement compared to that of using untreated RHAC (111 F/g). This is attributed to the synergetic effect of the introduction of pyrrolic/pyridine-based nitrogen functional groups and the increase of the micropore volume on the surface of the carbon material. This study has a positive effect on the environment in terms of recycling waste resources and using plasma surface treatment.

바이오매스 활용을 높이기 위하여, 쌀겨 기반 활성탄소(RHAC)를 제조한 뒤 질소 플라즈마 표면처리를 수행하여 전기이중층 커패시터(EDLC) 성능을 고찰하였다. 질소 플라즈마 표면처리를 통하여, RHAC 표면에 최대 2.17%의 질소가 도입되었으며 특히, 5 min 동안 반응한 샘플의 경우 pyrrolic/pyridine계 N 작용기의 형성이 우세하였다. 또한, 실리카 제거에 의해 쌀겨 기반 탄소재에 메조기공이 형성되었고 질소 플라즈마 표면처리에 의해 탄소재 표면 거칠기가 증가하여 미세기공이 많이 형성되는 것을 확인할 수 있었다. 순환전압전류법 측정 실험으로부터, 5 mV/s의 전압 주사 속도에서 질소 플라즈마 처리된 RHAC의 비정전용량은 최대 200 F/g로, 미처리 RHAC (111 F/g)에 비교하여 80.2% 향상된 값을 나타내었다. 이러한 결과는 질소 플라즈마 표면처리로 인해 탄소재 표면에 도입된 pyrrolic/pyridine계 질소 작용기 도입과 탄소재 표면 미세기공 부피 향상으로 인한 시너지 효과인 것으로 판단된다. 본 연구는 폐기 자원을 재활용하고, 플라즈마 표면처리법을 통해 이종원소 도입을 한다는 점에서 환경적으로 긍정적인 영향을 미칠 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 산업통상자원부/한국산업기술평가관리원의 탄소산업기반조성사업(바인더 및 코팅용 피치를 활용한 음극재용 실리콘산화물인조흑연 복합체 개발: 20006777)의 지원에 의하여 수행하였으며 이에 감사드립니다.

References

  1. J. Zhao, Y. Jiang, H. Fan, M. Liu, O. Zhuo, X. Wang, Q. Wu, L. Yang, Y. Ma, and Z. Hu, Porous 3D Few-Layer Graphene-like Carbon for Ultrahigh-Power Supercapacitors with Well-Defined Structure-Performance Relationship, Adv. Mater., 29, 1604569 (2017). https://doi.org/10.1002/adma.201604569
  2. S. Zheng, Z.-S. Wu, S. Wang, H. Xiao, F. Zhou, C. Sun, X. Bao, and H.-M. Cheng, Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors, Energy Storage Mater., 6, 70-97 (2017). https://doi.org/10.1016/j.ensm.2016.10.003
  3. M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review, Nanoscale, 5, 72-88 (2013). https://doi.org/10.1039/C2NR32040A
  4. C. Emmenegger, P. Mauron, P. Sudan, P. Wenger, V. Hermann, R. Gallay, and A. Zuttel, Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials, J. Power Sources, 124, 321-329 (2003). https://doi.org/10.1016/S0378-7753(03)00590-1
  5. K. H. Kim, M.-S. Park, M.-J. Jung, and Y.-S. Lee, Influence of textural structure by heat-treatment on electrochemical properties of pitch-based activated carbon fiber, Appl. Chem. Eng., 26, 598-603 (2015). https://doi.org/10.14478/ACE.2015.1085
  6. Y. Gao, L. Li, Y. Jin, Y. Wang, C. Yuan, Y. Wei, G. Chen, J. Ge, and H. Lu, Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor, Appl. Ener.,153, 41-47 (2015). https://doi.org/10.1016/j.apenergy.2014.12.070
  7. B. Li, Z. Xiao, M. Chen, Z. Huang, X. Tie, J. Zai, and X. Qian, Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy, J. Mater. Chem. A, 5, 24502-24507 (2017). https://doi.org/10.1039/C7TA07088H
  8. Z. Chen, X. Wang, B. Xue, W. Li, Z. Ding, X. Yang, J. Qiu, and Z. Wang, Rice husk-based hierarchical porous carbon for high performance supercapacitors: the structure-performance relationship, Carbon, 161, 432-444 (2020). https://doi.org/10.1016/j.carbon.2020.01.088
  9. T. Eguchi, K. Sawada, M. Tomioka, and S. Kumagai, Energy density maximization of Li-ion capacitor using highly porous activated carbon cathode and micrometer-sized Si anode, Electrochim. Acta, 394, 139115 (2021). https://doi.org/10.1016/j.electacta.2021.139115
  10. X. Chen, W. Li, C. Tan, W. Li, and Y. Wu, Improvement in electrochemical capacitance of carbon materials by nitric acid treatment, J. Power Sources, 184, 668-674 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.073
  11. H. G. Kim and Y.-S. Lee, Effects of two different agents, H3PO4 and NaCl, to increase the flame-retardant properties of cellulose fibers, Carbon Lett., 29, 529-534 (2019). https://doi.org/10.1007/s42823-019-00087-z
  12. C.-T. Hsieh and H. Teng, Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon, 40, 667-674 (2002). https://doi.org/10.1016/S0008-6223(01)00182-8
  13. R. Lee, C. Lim, M.-J. Kim, and Y.-S. Lee, Acetic Acid Gas Adsorption Characteristics of Activated Carbon Fiber by Plasma and Direct Gas Fluorination, Appl. Chem. Eng., 32, 55-60 (2021). https://doi.org/10.14478/ACE.2020.1098
  14. E. J. Song, Adsorption Characteristics for Volatile Organic Compounds on Activated Carbon Fibers according to Introduction Method of Fluorine and Oxygen Functional groups, Masters dissertation, Chungnam National University, Daejeon, Korea (2019).
  15. L. Chen, T. Ji, L. Mu, and J. Zhu, Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode, Carbon, 111, 839-848 (2017). https://doi.org/10.1016/j.carbon.2016.10.054
  16. T. Sharifi, F. Nitze, H. R. Barzegar, C.-W. Tai, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, and T. Wagberg, Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion, Carbon, 50, 3535-3541 (2012). https://doi.org/10.1016/j.carbon.2012.03.022
  17. S. W. Seo, Y. J. Choi, J. H. Kim, J. H. Cho, Y.-S. Lee, and J. S. Im, Micropore-structured activated carbon prepared by waste PET/petroleum-based pitch, Carbon Lett., 29, 385-392 (2019). https://doi.org/10.1007/s42823-019-00028-w
  18. J.-Y. Jung and Y.-S. Lee, Electrochemical properties of KOH-activated lyocell-based carbon fibers for EDLCs, Carbon Lett., 27, 112-116 (2018). https://doi.org/10.5714/CL.2018.27.112
  19. E. K. Motlagh, S. Sharifian, and N. Asasian-Kolur, Alkaline activating agents for activation of rice husk biochar and simultaneous bio-silica extraction, Bioresour. Technol. Rep., 16, 100853 (2021). https://doi.org/10.1016/j.biteb.2021.100853
  20. A. Orita, K. Kamijima, M. Yoshida, and L. Yang, Application of sulfonium-, thiophenium-, and thioxonium-based salts as electric double-layer capacitor electrolytes, J. Power Sources, 195, 6970- 6976 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.028
  21. H. Notohara, K. Urita, H. Yamamura, and I. Moriguchi, High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous Carbon, Sci. Rep., 8, 1-7 (2018).
  22. M.-J. Jung, Y. Ko, K. H. Kim, and Y.-S. Lee, Oxyfluorination of Pitch-based Activated Carbon Fibers for High Power Electric Double Layer Capacitor, Appl. Chem. Eng., 28, 638-644 (2017). https://doi.org/10.14478/ACE.2017.1079
  23. Z. Jin, X. Yan, Y. Yu, and G. Zhao, Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors, J. Mater. Chem. A, 2, 11706-11715 (2014). https://doi.org/10.1039/C4TA01413H
  24. D. -Y. Shin, K. -W. Sung, and H. -J. Ahn, Synergistic effect of heteroatom-doped activated carbon for ultrafast charge storage kinetics, Appl. Surf. Sci., 478, 499-504 (2019). https://doi.org/10.1016/j.apsusc.2019.01.186
  25. J. Kim, J. Chun, S.-G. Kim, H. Ahn, and K. C. Roh, Nitrogen and fluorine co-doped activated carbon for supercapacitors, J. Electrochem. Sci. Technol., 8, 338-343 (2017). https://doi.org/10.5229/JECST.2017.8.4.338
  26. Y. K. Kim and K.-Y. Shin, Functionalized phosphorene/polypyrrole hybrid nanomaterial by covalent bonding and its supercapacitor application, J. Ind. Eng. Chem., 94, 122-126 (2021). https://doi.org/10.1016/j.jiec.2020.10.044
  27. T. Tagaya, Y. Hatakeyama, S. Shiraishi, H. Tsukada, M. J. Mostazo-Lpez, E. Moralln, and D. Cazorla-Amors, Nitrogen-doped seamless activated carbon electrode with excellent durability for electric double layer capacitor, J. Electrochem. Soc., 167, 060523 (2020). https://doi.org/10.1149/1945-7111/ab8403
  28. K. V. Sankar, R. K. Selvan, R. H. Vignesh, and Y. Lee, Nitrogen-doped reduced graphene oxide and aniline based redox additive electrolyte for a flexible supercapacitor, RSC Adv., 6, 67898 (2016). https://doi.org/10.1039/C6RA11521G
  29. P. Fu, L. Zhou, L. Sun, B. Huanga, and Y. Yuan, Nitrogen-doped porous activated carbon derived from cocoon silk as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction, RSC Adv., 7, 13383 (2017). https://doi.org/10.1039/C7RA00433H
  30. F. V. Ferreira, L. P. Souza, T. M. Martins, J. H. Lopes, B. D. Mattos, M. Mariano, I. F. Pinheiro, T. M. Valverde, S. Livi, and J. A. Camilli, Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration, Nanoscale, 11, 19842 (2019). https://doi.org/10.1039/c9nr05383b
  31. S. Polat and G. Atun, Enhanced cycling stability performance for supercapacitor application of NiCoAl-LDH nanofoam on modified graphite substrate, J. Ind. Eng. Chem., 99, 107-116 (2021). https://doi.org/10.1016/j.jiec.2021.04.015
  32. J. W. Lim, Effect of surface modification of anode active materials on electrochemical performance of EDLC, Masters dissertation, Chungnam National University, Daejeon, Korea (2011).
  33. Z. S. Iro, C. Subramani, J. Rajendran and A. K. Sundramoorthy, Promising nature-based activated carbon derived from flowers of Borassus flabellifer for supercapacitor applications, Carbon Lett., 31, 1145-1153 (2021). https://doi.org/10.1007/s42823-021-00237-2
  34. K. Tian, J. Wang, L. Cao, W. Yang, W. Guo, S. Liu, W. Li, F. Wang, X. Li and Z. Xu, Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance, Nat. Commun., 11, 1-10 (2020). https://doi.org/10.1038/s41467-019-13993-7
  35. K. S. Kim, S. C. Kang, J. D. Lee, and J. S. Im, Electrochemical Performance of CB/SiOx/C Anode Materials by SiOx Contents for Lithium Ion Battery, Appl. Chem. Eng., 32, 117-123 (2021). https://doi.org/10.14478/ACE.2020.1086
  36. S. J. Kim, B. C. Bai, M. I. Kim, and Y.-S. Lee, Improved specific capacitance of pitch-based activated carbon by KOH/KMnO4 agent for supercapacitors, Carbon Lett., 30, 585-591 (2020). https://doi.org/10.1007/s42823-020-00158-6
  37. C.-L. Huang, L.-M. Chiang, C.-A. Su, and Y.-Y. Li, MnO2/carbon nanotube-embedded carbon nanofibers as core-shell cables for high performing asymmetric flexible supercapacitors, J. Ind. Eng. Chem., 103, 142-153 (2021). https://doi.org/10.1016/j.jiec.2021.07.026