Acknowledgement
본 연구는 산업통상자원부/한국산업기술평가관리원의 탄소산업기반조성사업(바인더 및 코팅용 피치를 활용한 음극재용 실리콘산화물인조흑연 복합체 개발: 20006777)의 지원에 의하여 수행하였으며 이에 감사드립니다.
References
- J. Zhao, Y. Jiang, H. Fan, M. Liu, O. Zhuo, X. Wang, Q. Wu, L. Yang, Y. Ma, and Z. Hu, Porous 3D Few-Layer Graphene-like Carbon for Ultrahigh-Power Supercapacitors with Well-Defined Structure-Performance Relationship, Adv. Mater., 29, 1604569 (2017). https://doi.org/10.1002/adma.201604569
- S. Zheng, Z.-S. Wu, S. Wang, H. Xiao, F. Zhou, C. Sun, X. Bao, and H.-M. Cheng, Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors, Energy Storage Mater., 6, 70-97 (2017). https://doi.org/10.1016/j.ensm.2016.10.003
- M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review, Nanoscale, 5, 72-88 (2013). https://doi.org/10.1039/C2NR32040A
- C. Emmenegger, P. Mauron, P. Sudan, P. Wenger, V. Hermann, R. Gallay, and A. Zuttel, Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials, J. Power Sources, 124, 321-329 (2003). https://doi.org/10.1016/S0378-7753(03)00590-1
- K. H. Kim, M.-S. Park, M.-J. Jung, and Y.-S. Lee, Influence of textural structure by heat-treatment on electrochemical properties of pitch-based activated carbon fiber, Appl. Chem. Eng., 26, 598-603 (2015). https://doi.org/10.14478/ACE.2015.1085
- Y. Gao, L. Li, Y. Jin, Y. Wang, C. Yuan, Y. Wei, G. Chen, J. Ge, and H. Lu, Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor, Appl. Ener.,153, 41-47 (2015). https://doi.org/10.1016/j.apenergy.2014.12.070
- B. Li, Z. Xiao, M. Chen, Z. Huang, X. Tie, J. Zai, and X. Qian, Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy, J. Mater. Chem. A, 5, 24502-24507 (2017). https://doi.org/10.1039/C7TA07088H
- Z. Chen, X. Wang, B. Xue, W. Li, Z. Ding, X. Yang, J. Qiu, and Z. Wang, Rice husk-based hierarchical porous carbon for high performance supercapacitors: the structure-performance relationship, Carbon, 161, 432-444 (2020). https://doi.org/10.1016/j.carbon.2020.01.088
- T. Eguchi, K. Sawada, M. Tomioka, and S. Kumagai, Energy density maximization of Li-ion capacitor using highly porous activated carbon cathode and micrometer-sized Si anode, Electrochim. Acta, 394, 139115 (2021). https://doi.org/10.1016/j.electacta.2021.139115
- X. Chen, W. Li, C. Tan, W. Li, and Y. Wu, Improvement in electrochemical capacitance of carbon materials by nitric acid treatment, J. Power Sources, 184, 668-674 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.073
- H. G. Kim and Y.-S. Lee, Effects of two different agents, H3PO4 and NaCl, to increase the flame-retardant properties of cellulose fibers, Carbon Lett., 29, 529-534 (2019). https://doi.org/10.1007/s42823-019-00087-z
- C.-T. Hsieh and H. Teng, Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon, 40, 667-674 (2002). https://doi.org/10.1016/S0008-6223(01)00182-8
- R. Lee, C. Lim, M.-J. Kim, and Y.-S. Lee, Acetic Acid Gas Adsorption Characteristics of Activated Carbon Fiber by Plasma and Direct Gas Fluorination, Appl. Chem. Eng., 32, 55-60 (2021). https://doi.org/10.14478/ACE.2020.1098
- E. J. Song, Adsorption Characteristics for Volatile Organic Compounds on Activated Carbon Fibers according to Introduction Method of Fluorine and Oxygen Functional groups, Masters dissertation, Chungnam National University, Daejeon, Korea (2019).
- L. Chen, T. Ji, L. Mu, and J. Zhu, Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode, Carbon, 111, 839-848 (2017). https://doi.org/10.1016/j.carbon.2016.10.054
- T. Sharifi, F. Nitze, H. R. Barzegar, C.-W. Tai, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, and T. Wagberg, Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion, Carbon, 50, 3535-3541 (2012). https://doi.org/10.1016/j.carbon.2012.03.022
- S. W. Seo, Y. J. Choi, J. H. Kim, J. H. Cho, Y.-S. Lee, and J. S. Im, Micropore-structured activated carbon prepared by waste PET/petroleum-based pitch, Carbon Lett., 29, 385-392 (2019). https://doi.org/10.1007/s42823-019-00028-w
- J.-Y. Jung and Y.-S. Lee, Electrochemical properties of KOH-activated lyocell-based carbon fibers for EDLCs, Carbon Lett., 27, 112-116 (2018). https://doi.org/10.5714/CL.2018.27.112
- E. K. Motlagh, S. Sharifian, and N. Asasian-Kolur, Alkaline activating agents for activation of rice husk biochar and simultaneous bio-silica extraction, Bioresour. Technol. Rep., 16, 100853 (2021). https://doi.org/10.1016/j.biteb.2021.100853
- A. Orita, K. Kamijima, M. Yoshida, and L. Yang, Application of sulfonium-, thiophenium-, and thioxonium-based salts as electric double-layer capacitor electrolytes, J. Power Sources, 195, 6970- 6976 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.028
- H. Notohara, K. Urita, H. Yamamura, and I. Moriguchi, High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous Carbon, Sci. Rep., 8, 1-7 (2018).
- M.-J. Jung, Y. Ko, K. H. Kim, and Y.-S. Lee, Oxyfluorination of Pitch-based Activated Carbon Fibers for High Power Electric Double Layer Capacitor, Appl. Chem. Eng., 28, 638-644 (2017). https://doi.org/10.14478/ACE.2017.1079
- Z. Jin, X. Yan, Y. Yu, and G. Zhao, Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors, J. Mater. Chem. A, 2, 11706-11715 (2014). https://doi.org/10.1039/C4TA01413H
- D. -Y. Shin, K. -W. Sung, and H. -J. Ahn, Synergistic effect of heteroatom-doped activated carbon for ultrafast charge storage kinetics, Appl. Surf. Sci., 478, 499-504 (2019). https://doi.org/10.1016/j.apsusc.2019.01.186
- J. Kim, J. Chun, S.-G. Kim, H. Ahn, and K. C. Roh, Nitrogen and fluorine co-doped activated carbon for supercapacitors, J. Electrochem. Sci. Technol., 8, 338-343 (2017). https://doi.org/10.5229/JECST.2017.8.4.338
- Y. K. Kim and K.-Y. Shin, Functionalized phosphorene/polypyrrole hybrid nanomaterial by covalent bonding and its supercapacitor application, J. Ind. Eng. Chem., 94, 122-126 (2021). https://doi.org/10.1016/j.jiec.2020.10.044
- T. Tagaya, Y. Hatakeyama, S. Shiraishi, H. Tsukada, M. J. Mostazo-Lpez, E. Moralln, and D. Cazorla-Amors, Nitrogen-doped seamless activated carbon electrode with excellent durability for electric double layer capacitor, J. Electrochem. Soc., 167, 060523 (2020). https://doi.org/10.1149/1945-7111/ab8403
- K. V. Sankar, R. K. Selvan, R. H. Vignesh, and Y. Lee, Nitrogen-doped reduced graphene oxide and aniline based redox additive electrolyte for a flexible supercapacitor, RSC Adv., 6, 67898 (2016). https://doi.org/10.1039/C6RA11521G
- P. Fu, L. Zhou, L. Sun, B. Huanga, and Y. Yuan, Nitrogen-doped porous activated carbon derived from cocoon silk as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction, RSC Adv., 7, 13383 (2017). https://doi.org/10.1039/C7RA00433H
- F. V. Ferreira, L. P. Souza, T. M. Martins, J. H. Lopes, B. D. Mattos, M. Mariano, I. F. Pinheiro, T. M. Valverde, S. Livi, and J. A. Camilli, Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration, Nanoscale, 11, 19842 (2019). https://doi.org/10.1039/c9nr05383b
- S. Polat and G. Atun, Enhanced cycling stability performance for supercapacitor application of NiCoAl-LDH nanofoam on modified graphite substrate, J. Ind. Eng. Chem., 99, 107-116 (2021). https://doi.org/10.1016/j.jiec.2021.04.015
- J. W. Lim, Effect of surface modification of anode active materials on electrochemical performance of EDLC, Masters dissertation, Chungnam National University, Daejeon, Korea (2011).
- Z. S. Iro, C. Subramani, J. Rajendran and A. K. Sundramoorthy, Promising nature-based activated carbon derived from flowers of Borassus flabellifer for supercapacitor applications, Carbon Lett., 31, 1145-1153 (2021). https://doi.org/10.1007/s42823-021-00237-2
- K. Tian, J. Wang, L. Cao, W. Yang, W. Guo, S. Liu, W. Li, F. Wang, X. Li and Z. Xu, Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance, Nat. Commun., 11, 1-10 (2020). https://doi.org/10.1038/s41467-019-13993-7
- K. S. Kim, S. C. Kang, J. D. Lee, and J. S. Im, Electrochemical Performance of CB/SiOx/C Anode Materials by SiOx Contents for Lithium Ion Battery, Appl. Chem. Eng., 32, 117-123 (2021). https://doi.org/10.14478/ACE.2020.1086
- S. J. Kim, B. C. Bai, M. I. Kim, and Y.-S. Lee, Improved specific capacitance of pitch-based activated carbon by KOH/KMnO4 agent for supercapacitors, Carbon Lett., 30, 585-591 (2020). https://doi.org/10.1007/s42823-020-00158-6
- C.-L. Huang, L.-M. Chiang, C.-A. Su, and Y.-Y. Li, MnO2/carbon nanotube-embedded carbon nanofibers as core-shell cables for high performing asymmetric flexible supercapacitors, J. Ind. Eng. Chem., 103, 142-153 (2021). https://doi.org/10.1016/j.jiec.2021.07.026