• Title/Summary/Keyword: Activated carbon filter

Search Result 154, Processing Time 0.023 seconds

Chromaticity Improvement of PEG Waste from Wire Sawing of Silicon Ingot (실리콘 잉곳 절삭시 발생하는 폐 PEG 색도 개선에 관한 연구)

  • Cho, Yun-Kyeong;Jung, Kyeong-Youl;Sim, Min-Seok;Lee, Gi-Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.310-316
    • /
    • 2012
  • The chromaticity of polyethylene glycol (PEG) generated from the recyling of a silicone slurry waste was improved by using activated carbon powder and a carbon filter. The color change of the PEG waste was investigated by changing the amount of adsorbent, adsorption time and temperature. The surface area of activated carbon did not have a significant impact on improving the color of the PEG waste. According to the results for the APHA color variation of the PEG waste changing the amount of the carbon adsorbent, the optimal usage to achieve the low APHA value was 100~150 mg-C/g-PEG. From the investigatnion on the effect of the adsorption temperature range from $25^{\circ}C$ to $100^{\circ}C$, it was found that the optimal temperatures were $40{\sim}50^{\circ}C$ in terms of achieving the lowest APHA value. The variation of the APHA color was investigated by changing the operation condition of the activated carbon filters. The use of ACF was a good way to enhance the chromaticity of the PEG waste. As a result, the APHA value of the PEG waste (APHA=53 at the initial waste) was reduced to be 10 through the ACF purification. It was also confirmed that the performance of the used carbon adsorbent can be recovered by the washing with purified water.

Isolation of bacteria capable of removing 2-methylisoborneol and effect of cometabolism carbon on biodegradation

  • Du, Kang;Liu, Jian;Zhou, Beihai;Yuan, Rongfang
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.256-264
    • /
    • 2016
  • 2-Methylisoborneol (2-MIB) is one of typical odorants in potable water sources, which is hardly removed by conventional water treatment process. In this study, three strains capable of removing 2-MIB singly from drinking water were isolated from activated carbon of sand filter. They were identified to be Shinella zoogloeoides, Bacillus idriensis and Chitinophagaceae bacterium based on 16S rRNA gene sequence analysis. In mineral salts medium without external carbon source, removal efficiencies of $20{\mu}g/L$ 2-MIB in three days were 23.3%, 32.9% and 17.0% for Shinella zoogloeoides, Bacillus idriensis and Chitinophagaceae bacterium, respectively. The biodegradation of 2-MIB was significantly improved with the presence of cometabolism carbon(glycerol, glucose, etc.). In the period of 20 days, Bacillus idriensis can remove 2 mg/L MIB to $368.2{\mu}g/L$ and $315.4{\mu}g/L$ in mineral salts medium without and with glycerol respectively. The removal of 2-MIB by Bacillus idriensis was from 2 mg/L to $958.4{\mu}g/L$ in Xiba river samples on 15 days.

Assessment for Effect of Water Environment by Addition of Improvement Agents on Sediments (저질 개선제의 주입에 의한 수 환경에 미치는 영향 평가)

  • Kim Woo-Hang;Kim Do-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.69-73
    • /
    • 2004
  • Control if Sediment is very important in prawn farm due to the eruption of toxic materials such as unionized $H_{2}S,\;NH_{3}\;and\;NO_3$. In this study, column test was conducted with filter media such as activated carbon, zeolite, oyster shell and iron chloride to evaluate the reduction of toxicity from sediment. ammonia-N($NH_3$) was effectively removed by Zeolite and oyster shell. It was indicated that ammonium ion($NH_4^+$) was removed by ion exchange of zeolite. And the ammonia in the column of oyster shell was existed as the form of $NH_4^+$, which is not toxic for prawn because oyster shell was stably kept at $8{\sim}9g$ of pH. Therefore, some of ammonia($NH_4^+$) was removed by oyster shell. Hydrogen sulfide and COD were effectively removed by adsorption of activated carbon and a partial removal of hydrogen sulfide was accomplished by Oyster shell. Phosphorous was removed by activated carbon, oyster shell and iron chloride. In prawn farm, the concentration of ammonia was increased with increase of pH by algae photosynthesis in the column of activated carbon, zeolite and iron chloride, but it was revealed that pH was stably kept in the column of oyster shell.

  • PDF

Removal Property of Taste and Odor Causing Material in Pulsator Clarifier (맥동식 침전지에서 맛·냄새 유발물질 제거 특성)

  • Jeong, Il Yong;Cha, Min Whan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.104-109
    • /
    • 2011
  • The removal efficiencies of 2-methylisoborneol (MIB) and geosmin were investigated to reveal removal characteristics of typical organic compounds causing disagreeable taste and odor at the conventional water treatment plant installed with pulsator clarifier patented by the French company $Degr{\acute{e}}mont$. The injection rate of Powdered Activated Carbon (PAC) into water was changed step wisely as we conducted jar tests in the laboratory and water treatment in the actual plant. 2-MIB concentration decreased linearly while geosmin did exponentially along with the injection rate of PAC at our jar tests. The removal efficiency of geosmin by PAC injection was considerably higher than that of 2-MIB. In the real pulsator clarifier, 2-MIB concentration started decreasing as the injection rate reached up to 10 mg/L of PAC. On the other hand, the concentration of geosmin in water decreased proportional to the injection rate of PAC. In the sand filtration, removal efficiencies of 2-MIB and geosmin on July were much higher than those on March. It was carefully suggested beforehand and found afterwards that general microorganisms notably existed in the sand filter with no chlorine in filter influent and backwash water and the sand filter biologically activated removed much more odor compounds. It was considered as the reason why the removal efficiency of 2-MIB and geosmin was increased. The microbial activity maybe increased in summer with water temperature rising and low filtration rate possibly increased contact time between odor compounds and general microorganisms.

Evaluating the Applicability of Activated Carbon-added Fiberboard Filters Fabricated with Lignocellulosic Fiber for the Reduction Equipment of Particulate Matter (리그노셀룰로오스 섬유 기반 활성탄-첨가 섬유판 필터의 미세먼지 저감장치용 적용가능성 평가)

  • Yang, In;So, Jae min;Hwang, Jeong Woo;Choi, Joon weon;Lee, Young-kyu;Choi, Wonsil;Oh, Seung Won;Moon, Myoung cheol
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.548-556
    • /
    • 2021
  • This study was conducted to investigate the applicability of lignocellulosic fiber and coconut shell activated carbon (CSA) for the production of a particulate matter (PM)-reducing air-filter as raw materials to solve the environmental problems of non-woven fabrics. CSA had a good potential to use as a raw material of air-filter for reducing volatile organic compounds as well as noxious metals, and reduction capability of the CSA was 5 times higher than that of wood fiber. Natural adhesives formulated with proteinaceous wastes mostly were applied successfully to fabricate air-filters with the shape of fiberboard. The air-filter fabricated with the minimum target density of 200 kg/m3 and the maximum CSA-content of 40 wt% in fiberboard had a good manageable strength. However, the fiberboard filters was required to make vent-holes for improving an air-permeability of the filters. Size of the CSA particles was adjusted to greater than 2 mesh with the consideration of strength and formability of the fiberboard. Three-layers fiberboard that only wood fiber and the mixture of wood fiber and CSA were formed in the surface and middle layers, respectively, was determined to the optimal condition for the production of air-filters. In addition, traditional Korean paper handmade from mulberry trees (TKP) showed a good PM-reducing property as an air-filter. It is concluded that air-filtering set composed of fiberboard with vent-holes and TKP instead of conventional air-filters made with non-woven fabrics can be used as a filter for reducing the concentrations of PM, VOC and noxious metals existed in indoor and outdoor spaces.

The Appropriate Treatment and Reuse Ability Assessment of Pigment Wastewater by Physical, Chemical, and Biological Process (물리, 화학 및 생물학적 방법에 의한 안료폐수의 적정처리 및 재이용 가능성 평가)

  • 정종식;옥치상
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 1998
  • This study was conducted to assess the characteristics of plgment wastewater and the removal rates of appropriate treatment by physical, chemical and biological Process, and the possibility of reuse for effluent. Based on the results, the wastewater qualities of pigment were pH 5.1$\pm$3.4, temperature 43.0$\pm$ 15.$0^{\circ}C$, BOD 1,431.4$\pm$589.6mg/l, COD 2,282.8$\pm$466.5mg/l, turbidity 1,340$\pm$820NTU, color 243.0$\pm$147.0unit, Pb 36.5$\pm$9.5mg/l and $Cr^+6$ 10.3$\pm$ 1.3mg/l, respectively. The removal rates of adsorption by activated carbon and filter process were BOD 40.6% , COD 57.0% , turbidity 89.6%, color 87.2%, Pb 86.0% and $Cr^+6$ 10.6%, respectively. And the removal rates of reduction, neutralization, coagulation and aP floatation process were BOD 18.2%, COD 24.3%, turbidity 74.3%, color 56.7%, Pb 68.6% and $Cr^+6$ 97.8%, respectively. The removal rates of activated sludge process were BOD 95.9%, COD 86.0%, turbidity 27.8%, color 25. 2%. Pb 26.9% and $Cr^+6$ 50.0% , respectively. The total removal rates of treatment by physical, chemical and biological process were BOD 98.0% , COD 95.4%, turbidity 98.1%, color 95.8%, Pb 97.0% and $Cr^+6$ 99.0%, respectively. According to the test results for possibility of reuse with coagulation-adsorption by activated carbon process of effluent, COD was higher than that of raw water and others were similar to that of raw water thus, it Is considered to be reused.

  • PDF

Removal of Non-biodegradable Organic Contaminants in Wastewater from crude oil reserve base Using Pulse UV System (Pulse UV 장치를 이용한 원유비축시설 발생폐수의 난분해성 유기오염물질 제거)

  • Sohn, Jin-Sik;Park, Soon-Ho;Jung, Eui-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.861-867
    • /
    • 2011
  • Wastewater from crude oil reserve base usually contains large amount of non-biodegradable contaminants. The conventional wastewater treatment progress can hardly meet the regulation of wastewater effluent quality. This study investigated the removal of non-biodegradable organic contaminants in wastewater from crude oil reserve base using a pulse UV treatment. The modified process incorporating pulse UV process was set up to treat the wastewater from crude oil reserve base. The treatment process is composed with coagulation and flocculation, micro-bubble flotation, sand filter, pulse UV system, and GAC filter. The results show CODMn was effectively removed by the process with pulse UV system and it can meet the wastewater effluent regulation. The single effect of pulse UV process in CODMn removal was not significant(9~15% based on sand filtered effluent), however with the subsequent activated carbon filter the removal ratio CODMn was increased up to 28% compared to the process without pulse UV syetem.

An Effective Block of Radioactive Gases for the Storage During the Synthesis of Radiopharmaceutical (방사성의약품 합성에서 발생하는 방사성기체의 효율적 차단)

  • Chi, Yong Gi;Kim, Dong Il;Kim, Si Hwal;Won, Moon Hee;Choe, Seong-Uk;Choi, Choon Ki;Seok, Jae Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.126-130
    • /
    • 2012
  • Purpose : Methode an effective block was investigated to deal with volatile radioactive gas, short lived radioactive waste generated as a result of the routinely produced radiopharmaceuticals FDG (2-deoxy-2-[$^{18}F$]fluoro-D-glucose) and compound with $^{11}C$. Materials and Methods : All components of the radiation stack monitoring and data management system for continuous radioactive gas detection in the air extract system purchase from fixed noble gas monitor of Berthold company. TEDLAR gas sampling bags purchase from the Dongbanghitech company. TEDLAR gas sampling bags (volume: 10 L) connected via paraflex or PTFE tubing and Teflon 3 way stopcock. When installing TEDLAR gas sampling bags in Hot cell on the inside and not radioactive gas concentrations were compared. According to whether the Hot cell inside a activated carbon filter installed, compare the difference in concentration of the radioactive gas $^{18}F$. Comparison of radiation emission concentration difference of module a FASTlab and TRACElab. Results : Activated carbon filter are installed in the Hot cell, a measure of the concentration of radioactive gas was 8 $Bq/m^3$. Without activated carbone filter in the hot cell was 300 $Bq/m^3$. Tedlar bag prior to installation of the radioactive gases a measure of the concentration was 3,500 $Bq/m^3$, $^{11}C$ synthesis of the measured concentration was 27,000 $Bq/m^3$. After installed a Tedlar bag and a measure concentration of the radioactive gases was 300 $Bq/m^3$ and $^{11}C$ synthesis was 1,000$Bq/m^3$. Conclusion : $^{11}C$ radioactive gas that was ejected out of the Hot cell, with the use of a Tedlar gas sampling bag stored inside. A compound of 11C is not absorbed onto activated carbon filter. But can block the release out by storing in a Tedlar gas sampling bag. We was able to reduce the radiation exposure of the worker by efficient radiation protection.

  • PDF

Evaluation of the Stability of Oxidation-Reduced Potential (ORP) Using the Filter of the Alkaline Water (알칼리 환원수 필터의 산화환원전위 안정화 평가)

  • Nam, Sangyep;Kwon, Yunjung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.129-135
    • /
    • 2016
  • This study is about ionic water generator filter Recently, a lot of people feel deep interest in health and drinking water. Evaluation of the stability of oxidation-reduced potential (ORP) using the filter of the alkaline water. This study utilizes the three filter of activated carbon, UF, carbon block in alkaline reduced water equipment. Passing the water to the filter is evaluated that the OPR values are stability in accordance with the change of the volume in the bucket. Alkaline reduced water equipment is a system that has the function of making the water reduction. This system is the values of the human body beneficial minerals and ORP are made in the functional water has a very low value than general water. Which has passed through the filter the water in the water negative ions and positive ions through the electrolytic. After electrolysis, the cathode side by water, including $Ca^+$, $K^+$, $Mg^+$, $Na^+$ water gets Alkaline Reduced Water containing the minerals beneficial to the human body. A positive electrode side is made of the organic materials that have an anion such as chlorine (Cl), phosphorus (P), sulfur(S). This experiment uses the Alkaline Reduced Water to adjust the magnitude of the voltage of the electrolysis in the Alkaline Reduced Water. That is 1st step(pH8) 2nd step (pH8.5) 3th step (pH9), 4th step (pH9.5) in the Alkaline Reduced Water and -1st step (pH6.0), -2nd step (pH5.0) used as the acidic oxidation water. When the water passes through the three filter in this system was evaluated whether the ORP values are changed and stabilized. When about 100 liters of water passing through the filter was confirmed that the ORP values are stability and evaluation.

Breakthrough behaviour of NBC canister against carbon tetrachloride: a simulant for chemical warfare agents

  • Srivastava, Avanish Kumar;Shah, D.;Mahato, T.H.;Singh, Beer;Saxena, A.;Verma, A.K.;Shrivastava, S.;Roy, A.;Yadav, S.S.;Shrivastava, A.R.
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • A nuclear, biological, chemical (NBC) canister was indigenously developed using active carbon impregnated with ammoniacal salts of copper (II), chromium (VI) and silver (I), and high efficiency particulate aerosol filter media. The NBC canister was evaluated against carbon tetra chloride ($CCl_4$) vapours, which were used as a simulant for persistent chemical warfare agents under dynamic conditions for testing breakthrough times of canisters of gas masks in the National Approval Test of Respirators. The effects of $CCl_4$ concentration, test flow rate, temperature, and relative humidity (RH) on the breakthrough time of the NBC canister against $CCl_4$ vapour were also studied. The impregnated carbon that filled the NBC canister was characterized for surface area and pore volume by $N_2$ adsorption-desorption isotherm at liquid nitrogen temperature. The study clearly indicated that the NBC canister provides adequate protection against $CCl_4$ vapours. The breakthrough time decreased with the increase of the $CCl_4$ concentration and flow rate. The variation in temperature and RH did not significantly affect the breakthrough behaviour of the NBC canister at high vapour concentration of $CCl_4$, whereas the breakthrough time of the NBC canister was reduced by an increase of RH at low $CCl_4$ vapour concentration.