• Title/Summary/Keyword: Activated carbon fibers

Search Result 137, Processing Time 0.03 seconds

Nitric Oxide Sensing Property of Gas Sensor Based on Activated Carbon Fiber Radiated by Electron-beam (전자빔이 조사된 활성탄소섬유 기반 가스센서의 일산화질소 감지 특성)

  • Lee, Sangmin;Jung, Min-Jung;Lee, Kyeong Min;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.299-305
    • /
    • 2017
  • Activated carbon fibers (ACFs) were surface-modified by electron beam (E-beam) irradiation and used as a gas sensor electrode to investigate the effect of E-beam on nitric oxide (NO) gas sensing performance. XPS results showed that the oxygen component of ACFs surface treated by E-beam decreased and $sp^2$ bonded carbon of ACFs surface increased. These results were attributed to the structural transformation of ACFs surface irradiated by E-beam. NO gas sensitivity of the electrode composed of ACFs irradiated by100 kGy increased from about 4% to 8%, and the response time was also meaningfully enhanced from 360 s to 120 s. This is due to the fact that the $sp^2$ carbon bond increased by E-beam irradiation of activated carbon fibers, which significantly affects the resistance change of the electrode in NO gas sensing.

Antibacterial Activity of Activated Carbon Fibers Containing Copper Metal (구리 함유 활성 탄소 섬유의 항균 특성)

  • 박수진;김병주;이종문
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.235-241
    • /
    • 2003
  • The polyacrylonitrile (PAN)-based activated carbon fibers (ACFs) containing copper metal were electrolytically prepared in introducing the antibacterial activity into ACFs. The antibacterial activity was investigated by dilution test against Staphylococous aureus (S. aureus; gram positive and virulence) and Klebsiella pnemoniae (K. pnumoniae: gram negative and avirulence). The micropore and textural properties of the ACFs containing copper metal were characterized by BET, t-plot, and H-K methods. The ACFs showed slight decreases in BET's specific surface area, micropore volume, and total pore volume as copper metal increased. However, the antibacterial activities of the ACFs were strongly increased against S. aureus as well as K. pnumoniae, which could be attributed to the presence of copper metal in CU/ACFs systems.

NO Adsorption and Catalytic Reduction Mechanism of Electrolytically Copper-plated Activated Carbon Fibers (전해 구리 도금된 활성탄소섬유에 의한 NO의 촉매 환원반응 메커니즘 연구)

  • Park, Soo-Jin;Jang, Yu-Sin;Kawasaki, Junjiro
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.664-668
    • /
    • 2002
  • In this work, the catalytic reduction mechanisms of NO over ACFs/copper prepared by electrolytic copper plating has been studied. It was found that copper content on carbon surfaces increased with increasing the plating time. However, a slightly gradual decrease of adsorption properties, such as, BET specific surface area, was observed in increasing the plating times within the range of well-developed micropore structures. As experimental results, nitric oxide was converted into the nitrogen and oxygen on ACFs and ACFs/copper catalyst surfaces at $500^{\circ}C$. Especially, the surfaces of ACFs/copper catalyst were found to scavenge the oxygen released by catalytic reduction of NO, which could be explained by the presence of another nitric oxide reduction mechanism between ACFs and ACFs/copper catalysts.

Adsorption of heavy metal ions onto a surface treated with granular activated carbon and activated carbon fibers (표면 처리에 따른 입상활성탄 및 활성탄소섬유의 중금속 흡착)

  • Kang, Kwang Cheol;Kwon, Soo Han;Kim, Seung Soo;Choi, Jong Won;Chun, Kwan Sik
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.285-289
    • /
    • 2006
  • In this study, the effect of an acidic treatment on granular activated carbon (GAC) and activated carbon fibers (ACF) was investigated for a $Pb^{2+}$ and $Ni^{2+}$ ion adsorption. 1.0 M nitric acid solution was used as the acid solution for the surface treatment. Surface properties of the GAC and ACF were characterized by the pH, elemental analysis and pHpzc (pH of the point of zero charge). Their specific surface area and the pore structure were also evaluated by the nitrogen adsorption data at 77K. As a result, the acidic treatment led to an increase of the oxygen-containing functional groups. Furthermore, the adsorption capacity of the acid-treated GAC and ACF was improved in the order of acidic-ACF > untreated-ACF > acidic-GAC > untreated-GAC, though the decrease in specific surface area induced by a pore blocking of the functional groups was observed.

Adsorption Characteristics of ACF for the Removal of VOCs in the PCB Manufacturing Process (PCB 제조공정에서 발생하는 VOC를 처리하기 위한 흡착제를 흡착특성)

  • 신창섭;김기환;원정일
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.1
    • /
    • pp.67-74
    • /
    • 2001
  • In the manufacturing process of PCB , three kinds of VOCs such as aceton, methanol and 2-metoxyethanol are being used. In this study, adsorption characteristics of activated carbon fibers(ACFs) and active carbon were examined to temove these VOCs. The experimental results showed that ACF has better adsorption and regeneration efficiency than activated carbon. Phenolic-resin based ACF showed the highest adsorption capacity and the capacity was not decreased after repeated regeneration by steam. On the adsorption and desorption experiments for ternary components, preferential adsorption with roll-over phenomena was appeared. 2-Metoxyethanol was strong adsorbaste and it displaced adsorbed methanol and aceton.

  • PDF

Molecular Sieve Properties for $CH_4/CO_2$ of Activated Carbon Fibers Prepared by Benzene Deposition (벤젠 증착에 의해 제조된 활성탄소섬유의 $CH_4/CO_2$ 분자체 성질)

  • Moon, Seung-Hyun;Shim, Jae-Woon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.614-619
    • /
    • 2005
  • The activated carbon fibers of different surface area and pore structures were modified by carbon deposition from the pyrolysis of benzene, in an attempt to obtain carbon molecular sieves of high adsorption capacity and selectivity for the separation of $CO_2/CH_4$ gas mixtures. The ACFs molecular sieves prepared from different temperature and time were tested by the static adsorption of $CO_2$ and $CH_4$ gas, and their pore structures were characterized by the $N_2$ adsorption isotherms. We are able to prepare ACF molecular sieve with good selectivity for $CO_2/CH_4$ separation and showing acceptable adsorption capacities from the change of porosity by carbon deposition of pyrolyzed benzene.

Microstructural Changes during Activation Process of Isotopic Carbon Fibers using CO2 Gas(I)-XRD Study (이산화탄소를 이용한 등방성 탄소섬유의 활성화과정 중 발생하는 구조변화(I)-XRD를 이용한 분석)

  • Roh, J.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.742-748
    • /
    • 2003
  • The structural parameters such as Lc, La and d of $CO_2$activated isotropic carbon fibers(ACFs) were obtained from XRD in order to understand a development mechanism of micropores. And the structural parameters were compared with specific surface area(SSA) data. The $d_{002}$, Lc, and La of the original fiber were measured to be 4.04$\AA$, 6.2$\AA$, and 23.6$\AA$, respectively. Carbonization of outer-parts and oxidization of inner-parts of the original fibers were far from completeness. It was observed that the structural changes of the ACFs during activation take place severely, therefore the carbonization and the oxidization of the fibers take place simultaneous with pore developments. The $d_{002}$ of the ACFs was increased to be 2.80$\AA$, and the La of the ACFs was decreased to be 17.0$\AA$ by activation. It was shown that the pores are developed continuously from the outer-parts to the inner-parts of the fibers, therefore the SSA increases as a result of the development of pores fully to the inner-parts of the fiber when the burn-off degree was over :39%. It seems that the (002) planes of crystallites contribute to the micropore wall related to the super high SSA.SSA.

Preparation of Carbon Electrodes Using Activated Carbon Fibers and Their Performance Characterization for Capacitive Deionization Process (활성탄소섬유를 이용한 탄소전극의 제조 및 축전식 탈염공정에서의 성능평가)

  • Park, Cheol Oh;Oh, Ju Seok;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • In this study, the carbon electrodes using activated carbon fibers (ACFs) were prepared for the capacitive deionization process. The Polyvinylidene fluoride (PVDF) was used as the binder and the mixed ACFs with proper solvent was cast on the commercial graphite sheets to prepare the carbon electrodes. At this moment, the different particle sizes of ACFs were applied and the mixing ratio of solvent, PVDF and ACFs, 80 : 2 : 18 and 80 : 5 : 15, were used for the electrode preparation. Then their salt removal efficiencies were characterized under the various operating conditions, adsorption potential and time, desorption potential and time, concentration of feed NaCl solution and flow rate as well. Typically, the salt removal efficiency of 53.6% were obtained at the particle size below $32{\mu}m$, mixing ratio 80 : 2 : 18, adsorption 1.2 V and 3 min, desorption -0.1V and 1 min, and 15 mL/min flow rate of NaCl 100 mg/L.

Adsorption Characteristics of Chromium Ion at Low Concentration Using Oxyfluorinated Activated Carbon Fibers (함산소불화 활성탄소섬유를 이용한 저농도 크롬이온의 흡착 특성)

  • Kim, Min-Ji;Jung, Min-Jung;Choi, Suk Soon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.432-438
    • /
    • 2015
  • In this work, activated carbon fibers (ACFs) were oxyfluorinated and their adsorption ability for the low concentration of hexavalent chromium in an aqueous solution was investigated. The pore structure and surface properties of ACFs were examined by BET and X-ray Photoelectron Spectroscopy (XPS), respectively. Due to the oxyfluorination treatment, the content of (C-O) bond on ACFs surface which influences the adsorption capacity for heavy metal ions increased largely, resulting that $Cr^{6+}$ adsorption equilibrium reached quickly within 10 min. In addition, the maximum removal efficiency at the initial $Cr^{6+}$ concentration of 20 ppm was observed, which is a 100% improvement compared to that of non-treated ACFs. These results suggest that the oxyfluorination of ACFs can be applied as a good surface treatment for the effective adsorption of the low concentration of $Cr^{6+}$.