• Title/Summary/Keyword: Activated Fly Ash

Search Result 92, Processing Time 0.021 seconds

Characteristics of Wastewater Treatment by the Continuous-Flow Fixed Biofilm Process Using Porous Fly Ash Carrier (다공성 석탄회 담체를 이용한 연속류식 고정 생물막 공정의 폐수 처리 특성)

  • Ryu, Jae-Chun;Kim, Young-Ho;Yang, Hyun-Soo;Kwak, Doo-Won;Yoo, Sung-Joon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.200-205
    • /
    • 2005
  • We have prepared the porous carrier that has high capacity for immobilization of microorganisms and adsorption capacity for cation using fly ash in the previous work. In this study, we investigated the characteristics of piggery wastewater treatment in comparison with commercial carrier and conventional activated sludge process by continuous-flow fixed biofilm process in laboratory scale at the same experimental conditions to develop the biofilm process using porous fly ash carrier for wastewater treatment. As a result, the prepared fly ash carrier showed that removal efficiency of COD, TN and $NH_4{^+}-N$ items were 80%, 77% and 65%, respectively, which were higher efficiency than the commercial carrier and conventional activated sludge process. And the result of measurement for immobilized microorganisms after treatment showed higher capacity than the commercial carrier, and it was confirmed by SEM observation on fly ash carrier that the colony of microorganisms was stably formed.

Effect on the Corrosion of Steel by Unburnt Carbon in Fly Ash Cement Mortar (미연탄소분이 플라이 애시 시멘트 모르타르 내 철근의 부식에 미치는 영향)

  • Ha, Tae-Hyun;Bae, Jeong-Hyo;Kim, Dae-Kyeong;Lee, Hyun-Goo;Ha, Yoon-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.338-342
    • /
    • 2007
  • The increase of activated carbon contents in fly ashes accelerate the corrosion of steel embedded in ordinary portland cement(OPC) mortar. Cement losses its identity of colour when the % of carbon is increased. More than 60[%] area was rusted when carbon content is increased beyond 8[%] for the exposure period of one year. Comparable corrosion rate with OPC was obtained up to 6[%] carbon level only. The tolerable limit of replacement for various admixed carbon system under aggressive alternate wetting and drying condition with 3[%] NaCl was found to be 6 to 8[%].

Evaluation on the Shrinkage and Durability of Cementless Alkali-Activated Mortar (무(無)시멘트 알칼리 활성(活性) 모르타르의 수축(收縮) 및 내구성(耐久性) 평가(評價))

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.20 no.3
    • /
    • pp.40-47
    • /
    • 2011
  • In this study, we investigated the strength, shrinkage and durability of alkali-activated mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless alkali-activated concrete. In order to compare with the alkali-activated mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to shrinkage and freezing-thawing of the cementless alkali-activated mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, reduce shrinkage of about 40% and improve freezing-thawing durability of approximately 20%, but promote the velocity of carbonation of 2~3 times.

Influence of Water Glass on Strength of Fly Ash-Cements (플라이 애쉬-시멘트의 강도특성에 대한 물유리의 영향)

  • Park, Sang-Sook;Kang, Hwa-Young;Han, Sang-Ho;Rim, Yu-Sup;Kim, Dong-Kuk;Kim, Se-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.661-666
    • /
    • 2006
  • The compressive strength of a paste composed of a low-calcium Class F fly ash and alkaline activator solutions was investigated. These activator solutions, made with sodium hydroxide, water glass and water, have a very high $OH^-$ concentration. The composition of alkaline activator solution and temperature have been shown to notably influence the development of the compressive strength of the fly ash-cements paste. Compressive strength of 50 MPa could be achieved by curing of the fly ash at $60^{\circ}C$ for 48 hrs or $85^{\circ}C$ for 24 hrs. This study presented the optimum mixing ratio of Class F fly ash/sodium hydroxide/water glass as 25:8:2 in weight basis, and activator/fly ash as 0.6/1.0 for high strength paste.

A Comparative Study on Adsorption Characteristics of Total Nitrogen and Phosphorous in Water Using Various Adsorbents (여러 흡착제를 이용한 총질소와 총인 흡착특성에 관한 비교연구)

  • Ryoo, Keon Sang;Choi, Jong-Ha
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.700-705
    • /
    • 2012
  • The present study is to explore the possibility of utilizing loess and fly ash as well as activated carbon for the adsorptive removal of T-N and T-P in water. Here, we investigated adsorption efficiency and Freundlich constants k and 1/n of each adsorbent. It was found that fly ash has not adsorptive capability for both T-N and T-P in water. Adsorption of T-N from water by loess has not occurred, but showed that adsorption efficiency for T-P reached approximately 57.5% at equilibrium time of 24 hr and room temperature. Activated carbon was shown to be an effective adsorbent for adsorption of T-N from water. Freundlich constant 1/n value of activated carbon represented that adsorptive capability of activated carbon is almost equivalent to loess.

The Effect on the Alkali-Activator Mixture Ratio of fly Ash Mortar (알칼리 활성화제 혼합비가 플라이애시 모르타르에 미치는 영향)

  • Kang, Hyun-Jin;Kang, Su-Tae;Ko, Kyung-Taek;Ryu, Gum-Sung;Park, Jung-Jun;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.395-396
    • /
    • 2009
  • The purpose of this study is to observe the effect of mixture ratio of alkali-activator on workability and compressive strength of alkali-activated mortar that using 100% fly ash.

  • PDF

Synchrotron X-ray diffraction study on alkali-activated slag cement and fly ash-based geopolymers (플라이 애시 지오폴리머와 활성 슬래그 시멘트 생성물의 방사광 X선 회절 실험 연구)

  • Oh, Jae-Eun;Jun, Ssang-Sun;Choi, Se-Jin;Paulo, J.M-Monteiro
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.319-320
    • /
    • 2009
  • The alkali activation products of slag, fly ash C and fly ash F were investigated using compressive strength test and synchrotron x-ray diffraction. We propose that the predominantly amorphous geopolymer formed under ambient conditions is a disordered form of one of the ABC-6 group of zeolites, which includes poly-types such as hydroxycancrinite, hydroxysodalite, chabazite, levyne or fransinite.

  • PDF

Role of class-C fly Ash in the Development of Strength & Microstructure of Fly Ash-GGBS Geopolymer

  • Sasui, Sasui;Kim, Gyu Yong;Lee, Sang Kyu;Son, Min jae;Hwang, Eui Chul;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.79-80
    • /
    • 2020
  • The class-C fly ash (FA) and ground granulated blast-furnace slag (GGBS) based geopolymer activated in NaOH (4M) was studied regarding compressive strength, porosity, microstructure and formation of crystalline phases. The class-C FA and GGBS blends resulted in reduced strength and increased porosity of the matrix with the increase in FA content. The unreactivity of calcium in blends was observed with increasing FA content leading to strength loss. it is evident from XRD patterns that calcium in FA did not contribute in forming CSH bond, but formation of crystalline calcite was observed. Furthermore, XRD analyses revealed that reduction in FA leads to the reduction in crystallinity and SEM micrographs showed the unreactive FA particles which hinder the formation of denser matrix.

  • PDF

High Temperature Properties in Finishing Mortars of Exterior Insulation Finishing System Using Fly Ash and Waste Glass Powder (플라이애시와 폐유리분말을 사용한 외단열용 마감모르타르의 고온 특성)

  • Song, Hun;Shin, Hyeon Uk
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.64-72
    • /
    • 2019
  • Fly ash has different chemical composition depending on the type and quality of flaming coal. Fly ash is classified according to carbon content and particle size. Waste glass powder is manufactured by crushing glass. Exterior Insulation Finish System (EIFS) is generally applied by using poly-styrene foam which is economical and has excellent thermal insulation performance. However, poly-styrene foam has excellent insulation performance, but it is vulnerable to fire, which is becoming a serious problem. In this study, using a fly ash and waste glass powder to produce a finishing mortar at high temperatures. Also, High temperature strength and flame retardant properties were tested according to the cover thickness. From the test result, finishing mortar prepared using fly ash and waste glass powder is due to the improved heat resistance by alkali-activated bonding. However, since the strength decreases at high temperatures, it is necessary to select an appropriate mixing proportion.

High Resistivity Characteristics of the Sinter Dust Generated from the Steel Plant

  • Lee, Jae-Keun;Hyun, Ok-Chun;Lee, Jung-Eun;Park, Sang-Deok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.630-638
    • /
    • 2001
  • The electrical resistivity of sinter dusts generated from the steel industry and coal fly ash from the coal power plant has been investigated using the high voltage conductivity cell based on JIS B 9915 as a function of temperature and water content. Dust characterization such as the chemical composition, size distribution, atomic concentration, and surface structure has been conducted. Major constituents of sinter dusts were Fe$_2$O$_3$(40∼74.5%), CaO (6.4∼8.2%), SiO$_2$(4.1∼6.0%), and unburned carbon (7.0∼14.7%), while the coal fly ash consisted of mainly SiO$_2$(51.4%), Al$_2$O$_3$(24.1%), and Fe$_2$O$_3$(10.5%). Size distributions of the sinter dusts were bi-modal in shape and the mass median diameters (MMD) were in the range of 24.7∼137㎛, whereas the coal fly ash also displayed bi-modal distribution and the MMD of the coal fly ash was 35.71㎛. Factors affecting resistivity of dusts were chemical composition, moisture content, particle size, gas temperature, and surface structure of dust. The resistivity of sinter dusts was so high as 10(sup)15 ohm$.$cm at 150$\^{C}$ that sinter dust would not precipitate well. The resistivity of the coal fly ash was measured 1012 ohm$.$cm at about 150$\^{C}$. Increased water contents of the ambient air lowered the dust resistivity because current conduction was more activated for absorption of water vapor on the surface layer of the dust.

  • PDF