• 제목/요약/키워드: Activated Carbon Fibers

검색결과 137건 처리시간 0.024초

Characterization and Fabrication of Chemically Activated Carbon Fibers with Various Drying Temperatures using OXI-PAN Fibers

  • Moon, Sook-Young;Lee, Byung-Ha;Lim, Yun-Soo
    • Carbon letters
    • /
    • 제8권1호
    • /
    • pp.30-36
    • /
    • 2007
  • Oxidized PAN (OXI-PAN) fibers were used for the precursors of activated carbon fiber in study. How drying temperature affected the properties of carbon fibers on activating process of carbon fibers was investigated. The specific surface areas of activated carbon fibers have been determined on a series of chemically activated carbons with KOH and NaOH. The experimental data showed variations in specific surface area, iodine and silver adsorptions by the activated carbon fibers. The amount of iodine adsorption increases with increasing specific surface areas in both activation methods. This was because the ionic radius of iodine was smaller than the interior micropore size of activated carbon fibers. Silver adsorbed well in NaOH activated carbon fibers rather than KOH activated carbon fibers in this study.

An Overview of the Activated Carbon Fibers for Electrochemical Applications

  • Lee Gyoung-Ja;Pyun Su-Il
    • 전기화학회지
    • /
    • 제9권1호
    • /
    • pp.10-18
    • /
    • 2006
  • This article is concerned with the overview of the activated carbon fibers. Firstly, this review provides a comprehensive survey of the overall processes for the synthesis of the activated carbon fibers from the carbonaceous materials. Subsequently, the physicochemical properties such as pore structures and surface oxygen functional groups of the activated carbon fibers were discussed in detail. Finally, as electrochemical applications of the activated carbon fibers to electrode materials for electric double-layer capacitor (EDLC), the electrochemical characteristics of the activated carbon fiber electrodes and the various methods to improve the capacitance and rate capability were introduced. In particular, the effect of pore length distribution (PLD) on kinetics of double-layer charging/discharging was discussed based upon the experimental and theoretical results in our work. And then we discussed in detail the applications of the activated carbon fibers to adsorbent materials for purification of liquid and gas.

KOH 활성화에 의한 PAN계 활성탄소섬유의 제조 (The Preparation of PAN-based Activated Carbon Fiber by KOH)

  • 김기원;정승훈;임연수;정윤중
    • 한국세라믹학회지
    • /
    • 제36권6호
    • /
    • pp.577-582
    • /
    • 1999
  • Activated carbon fibers were prepared from stabilized PAN fibers by chemical activation using hydroxide. The variations in specific surface area amount of iodine adsorption micro-structure and pore size distribution in the activated carbon fibers after the activation process were discussed. In the chemical activation using potassium hydroxide specific surface area of about 2545m2/g and amount of iodine adsorption of 2049 mg/g were obtained at the condition of KOH/fiber ratio of 1 and 800$^{\circ}C$ Nitrogen adsorption isotherms for PAN based activated carbon fibers showed the type I in the Brunauer-Deming-Deming-Teller classification indicating the micro-pores consisting the activated fibers.

  • PDF

피치계 활성탄소섬유기반 가스센서 제조 및 유해가스 감응 특성 (Preparation of Gas Sensor from Pitch-based Activated Carbon Fibers and Its Toxic Gas Sensing Characteristics)

  • 김민일;이영석
    • 공업화학
    • /
    • 제25권2호
    • /
    • pp.193-197
    • /
    • 2014
  • 피치계 활성탄소섬유의 유해가스 감응특성을 알아보고자 피치계 활성탄소섬유와 폴리비닐알코올(PVA)을 이용하여 가스센서용 전극을 제조하였다. 제조된 가스센서용 활성탄소섬유 전극의 물리화학적 특성은 주사전자현미경(SEM) 및 비표면적 측정기(BET)를 이용하여 분석하였다. 또한, 전극의 유해가스 감응특성은 $NH_3$, NO 및 $CO_2$와 같은 여러 유독가스를 이용하여 확인하였다. 가스센서용 활성탄소섬유 전극의 비표면적은 바인더인 PVA에 의하여 활성탄소섬유보다 33% 감소하였지만, 전극의 기공크기분포는 PVA에 의하여 크게 영향을 받지 않았다. 가스센서용 활성탄소섬유 전극은 반도체 기반 가스센서와는 다르게 전자도약에 의해서 유해가스를 감응하였다. 본 연구에서, 활성탄소섬유 전극의 저항은 100 ppm의 $NH_3$ 유해가스에 대하여 7.5% 감소하였으며, 그 $NH_3$ 가스 감응특성이 다른 유해가스보다 뛰어남을 확인하였다.

Distribution of Silver Particles in Silver-containing Activated Carbon Fibers

  • Ryu, S.K.;Eom, S.Y.;Cho, T.H.;Edie, D.D.
    • Carbon letters
    • /
    • 제4권4호
    • /
    • pp.168-174
    • /
    • 2003
  • Silver nitrate ($AgNO_3$) powder was mixed into a reformed pitch precursor. Then, the silver-containing pitch was melt spun to form round and "C" shape fibers. A wire mesh was inserted prior to the nozzle to improve the spinnability of the silvercontaining precursor pitch. Silver particles in the carbon fibers (CFs) were detected by XRD and TEM. These tests showed that silver particles were uniformly distributed and the total amount of silver remained constant during stabilization and carbonization. Next, the silver-containing CFs were activated by steam diluted in nitrogen gas. Silver particles accelerated the activation rate, but the specific surface areas of the silver-containing ACFs were similar to those of non-silver containing ACFs at the same burn-off levels. The specific surface area of the C-shaped activated carbon fibers was larger than that of the round activated carbon fibers. The likely reason is that the surface area of a C-shaped CF is about two times larger than that of a round CF when equivalent cross-sectional areas are compared. A small amount of silver particles in the periphery of the CFs was removed during the activation, but the remainder of silver was stayed within the ACFs.

  • PDF

수증기 유량제어에 따른 피치계 활성탄소섬유 비표면적 특성에 대한 연구 (Study on the Manufacture and Characteristics of Pitch-Based Activated Carbon Fibers Using Steam Activation)

  • 신해름;여승준;노우승;김만태
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1333-1339
    • /
    • 2023
  • To produce activated carbon fibers, the process is carried out through either physical activation method or chemical activation method. In this study, we present the results regarding the characteristics of activated carbon fibers manufactured under various conditions through the quantitative control of steam. The yield after activation indicates a decreasing trend with the increase in steam quantity and activation time. Additionally, specific surface area characteristics exhibit variations based on activation time and steam flow rate. The SEM analysis results reveal that higher steam flow rates lead to the presence of both mesopores and macropores on the surface of activated carbon fibers (ACF).

Adsorption of nitrate onto nitrogen-doped activated carbon fibers prepared by chemical vapor deposition

  • Yoo, Pyunghwa;Amano, Yoshimasa;Machida, Motoi
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2468-2473
    • /
    • 2018
  • Nitrogen-doped activated carbon fibers (ACFs) were prepared by chemical vapor deposition using melamine powder and acetonitrile for introducing quaternary nitrogen on the commercial ACFs, subsequently heated at $950^{\circ}C$ and activated by steam. Adsorption experiments of nitrate in aqueous solution were also conducted to evaluate adsorption capacity of the prepared ACFs using ion chromatography. The amount of introduced nitrogen content and nitrogen species on activated carbon fibers was examined by CHN elemental analyzer and X-ray photoelectron spectroscopy, respectively. As a result, adsorption capacity of quaternary nitrogen-doped ACF (ST-ML-AN-ST) was 0.75 mmol/g, indicating ca. two-times higher than that of untreated ACF (0.38 mmol/g). According to the adsorption data, the Langmuir isotherm model was the best fit. The prepared samples were also regenerated using hydrochloric acid. After regeneration, the adsorption capacity of the nitrogen-doped ACF (ST-ML-AN-ST) showed ca. 80% on average, implying that a portion of nitrates was adsorbed on the prepared ACFs irreversibly.

A Structural Study of the Activated Carbon Fibers as a Function of Activation Degrees

  • Roh, Jae-Seung;Suhr, Dong-Soo
    • Carbon letters
    • /
    • 제5권2호
    • /
    • pp.51-54
    • /
    • 2004
  • Isotropic pitch-based carbon fiber was isothermally activated in $CO_2$ atmosphere. Structural parameters of the isotropic carbon fibers and activated carbon fibers (ACFs) were evaluated by X-ray diffraction (XRD). The $d_{002}$ and La of the carbon fibers were measured to be 4.04 ${\AA}$ and 23.6 ${\AA}$ and those of ACFs were 4.29 ${\AA}$ and 22.7 ${\AA}$, respectively, representing less ordered through activation process. The pores in the ACFs were characterized by BET, and they showed super-high specific surface area of maximum value 3,495 $m^2/g$ from average pore size of 8.3 ${\AA}$ at 59% burn-off. It was recognized that 8-9 ${\AA}$ was optimum range of pore size for efficient creation of high specific surface area. The average size of the pores formed at higher temperature ($1100^{\circ}C$) was larger than that of the pores formed at lower temperature ($900^{\circ}C$).

  • PDF

활성탄소섬유 제조시 전처리된 레이온 섬유의 열특성 분석 (Thermal Characteristics Analysis of Pre-Treated Rayon Fibers for Preparing Activated Carbon Fibers)

  • 최상선;이순홍
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.61-72
    • /
    • 2014
  • The aim of this study is to define the condition of optimal pre-treatment for preferable activated carbon fibers (ACFs), which are based on rayon fibers. This paper shows the ideal path of ACFs preparation process; implies that rayon fibers are pre-treated by various solvents with different times before the heating process. The pre-treated rayon fibers finally turned into desirable rayon fiber-based ACFs through optimal pre-treatment condition by heating processes. The thermal analysis method of pre-treated rayon fibers by thermo-gravimetry analyser (TGA) is an idealized tool, which analyzes the best thermal condition of pre-treatment process. Surface morphologies of resulting rayon fibers based ACFs were examined by scanning electron microscope(SEM). The results of TGA and SEM analyses show that the optimal pre-treatment condition for preparing ACFs was clearly defined, in terms of thermal stability and surface morphology.

수산화물에 의해 활성화된 OXI-PAN계 섬유의 제조 및 특성 (Preparation and Characterization of OXI-PAN Based Carbon Fibers Activated by Hydroxides)

  • 문숙영;한동윤;이병하;임연수
    • 한국세라믹학회지
    • /
    • 제42권7호
    • /
    • pp.469-474
    • /
    • 2005
  • Activated Carbon Fibers (ACFs) are widely used as adsorbents in technologies related to pollution abatement due to their highly porous structure and large adsorption capacity. The porous structure and surface area of ACFs depends strongly on both the activation processes arid the nature .of the precursors. The chemical activation with hydroxides has recently been, of great interest as it permits the preparation of activated carbon fibers with highly developed porosity. In this work, OXI-PAN fiber used as precursor for the preparation of activated carbon fibers by chemical activation with KOH and NaOH. The affects of several activation conditions on the surface properties, pore size distribution and adsorption capacity of Ag ion and Iodine ion on ACFs studied.