• Title/Summary/Keyword: Activated Carbon Fiber (ACF)

Search Result 114, Processing Time 0.303 seconds

NO gas sensing ability of activated carbon fibers modified by an electron beam for improvement in the surface functional group

  • Park, Mi-Seon;Lee, Sangmin;Jung, Min-Jung;Kim, Hyeong Gi;Lee, Young-Seak
    • Carbon letters
    • /
    • v.20
    • /
    • pp.19-25
    • /
    • 2016
  • Activated carbon fiber (ACF) surfaces are modified using an electron beam under different aqueous solutions to improve the NO gas sensitivity of a gas sensor based on ACFs. The oxygen functional group on the ACF surface is changed, resulting in an increase of the number of non-carbonyl (-C-O-C-) groups from 32.5% for pristine ACFs to 39.53% and 41.75% for ACFs treated with hydrogen peroxide and potassium hydroxide solutions, respectively. We discover that the NO gas sensitivity of the gas sensor fabricated using the modified ACFs as an electrode material is increased, although the specific surface area of the ACFs is decreased because of the recovery of their crystal structure. This is attributed to the static electric interaction between NO gas and the non-carbonyl groups introduced onto the ACF surfaces.

Preparation and Characterization of ACF Using Lyocell Adopting Surface Modification Process (리오셀 표면개질공정을 도입한 ACF 제조 및 특성)

  • Jo, Young Hyuk;Jin, Young Min;Lee, Soon Hong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • Lyocell fibers were used as a precursor in order to improve yield and strength of cellulose-based precursor while manufacturing activated carbon fiber(ACF). Lyocell fibers as a precursor for the preparation of ACF were surface-modified by reaction with 3-aminopropyltriethoxysilane(APTES) and pre-treated with KOH and H3PO4. Using aforementioned precursor, ACFs were prepared by a series of stabilization, carbonization and activation process at high temperatures. On each process, FT-IR, TGA, UTM and SEM were used to observe fibers' physical properties including structure and porous surfaces. FT-IR results proved that surface modification was achieved during stabilization, carbonization and activation process. TGA results during carbonization process found that surface modified fibers with APTES 0.02 mol(A2) showed higher thermostability, and extended pre-treatment increased yield. Especially, yield was found to have an increase of 10~20 wt% with surface modification during activation process. UTM results showed that tensile strength has the same order of concentration of APTES after surface modification, however, was found to show lower tensile strength than lyocell fibers after stabilization process. SEM results revealed that more homogeneous porosity control could be proceed after modifying the surface for the effective removal of hazardous substances.

Preparation of Electroless Copper Plated Activated Carbon Fiber Catalyst and Reactive Evaluation of NO Removal (무전해 도금법으로 제조된 구리 함유 활성탄소섬유 촉매의 제조와 NO 제거 반응성 평가)

  • Yoon, Hee-Seung;Oh, Jong Hyun;Lee, Hyung Keun;Jeon, Jong-Ki;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.863-867
    • /
    • 2008
  • Pitch based activated carbon fiber(ACF) was prepared from reformed naphtha cracking bottom oil(NCB oil) by melt spinning. The fibers obtained were stabilized, carbonized, and then steam activated. The ACF was sensitized with Pd-Sn catalytic nuclei via a single-step activation approach. This sensitized ACF was used as precursors for obtaining copper plated ACFs via electroless plating. ACFs uniformly decorated with metal particles were obtained with reduced copper plating in the reaction solution. Effects of the amount of copper on characteristics of ACF/Cu catalysts were investigated through BET surface area, X-ray diffraction, scanning emission microscopy, and ICP. The amount of copper increased with plating time, but the surface area as well as the pore volume decreased. NO conversion increased with reaction temperature. NO conversion decreased with increasing the amount of copper, which is seemed to be due to the reduction of surface area as well as the dispersion of copper.

Adsorption/Desorption Properties of VOCs on Activated Carbon Fiber (ACF를 이용한 휘발성 유기화합물(VOCs)의 흡착/탈착 특성)

  • Baek, Geun-Ho;Kim, Jung-Su;Jang, Hyen-Tae;Kim, Hyeong-Wan;Kim, Hyeong-Joo;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2439-2444
    • /
    • 2011
  • We investigated the adsorption/desorption property of volatile organic compounds(VOC) by using activated carbon fibers(ACF) instead of activated carbon(AC) which is conventionally used. The adsorption behavior of the fixed bed and the breakthrough characteristics were also studied. As a result, ACFj showed 1.15 times higher adsorption amount as compared to AC. The breakthrough Point and adsorption amount of VOCs were decreased with the increase of temperature. In the case of AC, desorption time having 99% removal efficiency was about as minutes, but that of ACF was about 5 minutes at same condition.

The Purification of Decontamination Liquid Waste by Electrosorption (전기적 흡 . 탕착에 의한 제염폐액의 정화처리기술)

  • 정종헌;문제권;김규남;이성호;이상문
    • Resources Recycling
    • /
    • v.8 no.3
    • /
    • pp.18-25
    • /
    • 1999
  • The study on the electrosorption of cobalt ions onto a porous activated carbon fiber (ACF) was performed to treat radioactive liquid wastes resulting from chemical or electrochemical decontamination and to regenerate the spent carbon electrode, Cyclic voltammetry was investigated on a rotating-disk electrode (RDE) to determine the region of potentials within which only double-layer charging should occur. The application of an electric potential increased the sorption of the cobalt ions. The adsorbed cobalt Ions could be released into the solution by reversing the appling potential, showing the reversibility of the process.

  • PDF

Adsorption and Thermal Regeneration of Toluene and Benzene on the Fixed Bed Packed with Activated Carbon and Activated Carbon Fiber

  • Kim, Jong-Hwa;Oh, Ok-Kyun;Haam, Seung-Joo;Lee, Chang-Ha;Kim, Woo-Sik
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.44-54
    • /
    • 2001
  • The characteristics of adsorption and desorption of benzene and toluene were investigated at a fixed bed packed with the activated carbon and activated carbon fiber. Through breakthrough experiments under various feed concentration conditions, it was found that the slope of mass transfer zone and the tailing in the breakthrough curves were different from the feed conditions due to different heats of adsorption. In hot nitrogen desorption, the regeneration time and mass transfer zone of the toluene desorption curve were longer than those of the benzene desorption curve because of the difference in adsorption affinity. With an increase in the regeneration temperature, the height of roll-up and the sharpness of desorption curves increased but the regeneration times decreased. The adsorption capacities of the activated carbon and activated carbon fiber after three-time thermal regenerations decreased about 25% and 37% for benzene and 18% and 25% for toluene, respectively. To investigate the effect of the regeneration temperature on the energetic efficiency, the characteristic desorption temperatures of toluene and benzene were investigated by calculating purge gas consumption and temperature.

  • PDF

Electrosorption of U(VI) by Surface-Modified Activated Carbon Fiber (표면처리 활성탄소섬유에 의한 U(VI)의 전기흡착)

  • Lee, Yu Ri;Jung, Chong Hun;Ryu, Seung Kon;Oh, Won Zin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.60-65
    • /
    • 2005
  • The electrosorption of U(VI) from waste water was carried out by using activated carbon fiber(ACF) felt electrode in a continuous electrosorption cell. In order to enhance the electrosorption capacity at lower potential, ACF felt was chemically modified in acidic, basic and neutral solution. Pore structure and functional groups of chemically modified ACF were examined, and the effect of treatment conditions was studied for the adsorption of U(VI). Specific surface area of all ACFs decreases by this treatment. The amount of acidic functional groups decreases with basic and neutral salt treatment, while the amount increases a lot with acidic treatment. The electrosorption capacity of U(VI) decreases on using the acid treated electrode due to the shielding effect of acidic functional groups. Base treated electrode enhances the capacity due to the reduction of acidic functional groups. The electrosorption amount of U(VI) on the base treated electrode at -0.3 V corresponds to that of ACF electrode at -0.9 V. Such a good adsorption capacity was not only due to the reduction of shielding effect but also the increase of $OH^-$ in the electric double layer on ACF surface by the application of negative potential.

Characterization of Fe-ACF/$TiO_2$ composite Photocatalysts Effect Via Degradation of MB Solution (Fe-ACF/$TiO_2$ 복합체의 특성과 MB용액의 분해에서 포토-펜톤 효과)

  • Zhang, Kan;Meng, Ze-Da;Ko, Weon-Bae;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.290-298
    • /
    • 2009
  • In this paper, the Fe-activated carbon fiber (ACF)/$TiO_2$ composite catalysts were prepared by a sol-gel method. The synthesized photocatalysts were used for the photo degradation of Methylene blue solution under UV light. From Brunauer-Emmett-Teller measurements (BET) data, it was shown the blocking of the micropores on the surface of ACF by treatment of Fe and Ti compound. As shown in SEM images, the ferric compounds and titanium dioxides were fixed onto the ACF surfaces. The result of X-ray powder diffraction showed that the crystal phase contained a mixing anatase and rutile structure and the 'FeO+$TiO_2$' from the composites. The EDX spectra for the elemental analysis showed the presence of C, O, and Ti with Fe peaks. Degradation activity of MB could be attributed to +OH radicals derived from electron/hole pair's reactions due to photolysis of $TiO_2$ and photo-Fenton effect of Fe.

The Preparation of Antibacterial Activated Carbon fibers and Their Application (항균성 탄소섬유의 제조와 그의 응용)

  • 오원춘;김범수;장원철
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.43-48
    • /
    • 2000
  • Upon the Preparation of activated carbon fiber(ACF) using chemical activation method and vapour activation method, the fiber obtained from the vapour activation method shows excellent surface Properties. The preparation of antibacterial activated carbon fiber was tried to open the new areas in application of carbon materials. The BET specific surface area and the average pore radius of the antibacterial ACFs were in the range of 844.27~1575.6 $cm^2$/g and 10.6~12.9 (equation omitted), respectively. From the adsorption studies on the antibacterial ACFs, typical Type I isotherms were obtained. And, from the SEM morphology results, it was observed that the surface of ACFs was partially coated by antibacterial materials after the treatment. Finally, from the antibacterial effects of antibacteral ACFs against E. coli, excellent antibacterial activity was shown. Concerning the above results, antibacterial ACFs can have wide application in the areas of sterilization, anti-fragrant. anti-insects.

  • PDF

A Review of Some Representative Techniques for Controlling the Indoor Volatile Organic Compounds

  • Kabir, Ehsanul;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.3
    • /
    • pp.137-146
    • /
    • 2012
  • Poor indoor air quality is now worldwide concern due to its adverse impacts on our health and environment. Moreover, these impacts carry a significant burden to the economy. Various technical approaches (e.g., biological, activated carbon fiber (ACF), photocatlytic oxidation (PCO), etc.) have gained popularity in controlling indoor volatile organic compounds (VOCs). This is because removing indoor VOC sources or increasing ventilation rates is often not feasible or economical. This review provides an overview of the various air purification technologies used widely to improve indoor air quality. Although most of these technologies are very useful to remove indoor VOCs, there is no single fully satisfactory method due to their diversity and presence at the low concentration. To achieve technical innovations and the development of specific testing protocols, one should possess a better knowledge on the mechanisms of substrate uptake at VOC concentrations.