• Title/Summary/Keyword: Action equations

Search Result 148, Processing Time 0.032 seconds

Effect of Drugs on the Cardiac Transport, Metabolism and Action of Idarubicin: Pharmacokinetic and Pharmacodynamic Modeling

  • Kang, Won-Ku
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.212-213
    • /
    • 2002
  • Using the isolated perfused rat heart this study investigated 1) the cardiac uptake of idarubicin (IDA), 2) the role of P-glycoprotein (P-gp) in the uptake process, 3) the formation of IDOL from IDA in the heart, and 4) the effect of P-gp inhibitors (verapamil, amiodarone, PSC 833), doxorubicin, hypothermia, xanthine derivatives (caffeine, theophylline) and metabolism inhibitors (rutin, phenobarbital) on the pharmacokinetics and pharmacodynamics of IDA using a mathematical modeling approach. A minimal model was constructed; the differential equations were numerically solved and fitted to the data using the ADAPT II-software package using maximum likelihood estimation assuming that the measurement error has a standard deviation which is a linear function of the measured quantity[1]. (omitted)

  • PDF

Modeling and Simulation Technique of Two Quadrant Chopper and PWM Inverter-Fed IPMSM Drive System and Its Application to Hybrid Vehicles

  • Murata, Toshiaki;Kawatsu, Utaro;Tamura, Junji;Tsuchiya, Takeshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.91-97
    • /
    • 2012
  • This paper presents a state space model of a two quadrant chopper and PWM inverter-fed Interior Permanent Magnet Synchronous Motor (IPMSM) drive system and its application to hybrid vehicles. The drive system has two different state equations for motoring and regenerating action. This paper presents a common state equation by using State Space Averaging method. Using this model of the IPMSM drive system, detailed simulation and controller design of the drive system, including PWM inverter switching, are given. The validity of this model and usefulness, according to a comparison among Maximum Torque/Ampere control, Maximum Torque/Flux control, and Maximum Efficiency optimization, are confirmed from simulation results.

Buckling of Composite Cylindrical Shells Sugjected ot Torsion of Lateral Pressure (비틀림 및 횡압럭을 받고 있는 복합재 원통쉘의 좌굴)

  • Han, Byeong-Gi;Lee, Seong-Hui;Yu, Taek-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1436-1444
    • /
    • 1996
  • The problem ofinstability of laminated circular cylindrical shell under the action of torsio or lateral pressure is investigated. The analysis is based on the Sander's theory for finite deformations of thin shell. The buckling is elastic for thin compoisite shell nad the geometry is assumed to be free of initial imperfections. The equilibrium equations are obrained by usitn the p[erturbation technique. Solution procedure is based on the Galerkin mehtod. The computer program for numerical results is made for several stacking sequence, length-to-radius ratio, and radius-to-thickness ratio. The numerical results of buckling load are present.

A Numerical Study on the Performance of a Two-Stage Ejector-Diffuser System

  • Kong, Fanshi;Kim, Heuy Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.548-553
    • /
    • 2015
  • The conventional ejector-diffuser system makes use of high pressure primary stream to propel the secondary stream through pure shear action for the purposes of transport or compression of fluid. It has been widely used in many industrial applications such as seawater desalination, solar refrigeration, marine engineering, etc. The present study is performed numerically to study the performance of a two-stage ejector-diffuser system. The detailed flow phenomenon of the ejector-diffuser system has been critically predicted by means of the numerical approach using compressible Reynolds averaged Navier-Stokes (RANS) equations. The axi-symmetric supersonic ejector-diffuser flow has been solved by a fully implicit finite volume scheme with a two-equation k-omega turbulence model. The numerical results are validated with existing experimental data. Detailed flow physics and their contributions on ejector performance are detected to compare both single-stage and two-stage ejectors. The performance improvement on the ejector-diffuser system is discussed in terms of the mass flux ratio and the coefficient of power.

A study on the Nonlinear Normal Mode Vibration Using Adelphic Integral

  • Huinam Rhee;Kim, Jeong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1922-1927
    • /
    • 2003
  • Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6$\^$th/ order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhoff-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.

Research of Stable Grapsing in Field Robot (Field-Robot의 안정적 파지운동 제어에 관한 연구)

  • 박경택;심재군;한현용;양순용;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.492-495
    • /
    • 1997
  • This paper aims to derive a mathematical model of the dynamics of handling task in field robot which stable grasping and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraints of tight area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Thirdly, simulation results are shown and the effects of geometric constraints of contact-area are discussed. Finally, it is shown that even in the simplest case of dual single D.O.F. manipulators there exists a sensory feedback from sensing data of he rotational angle of the object to command inputs to joint actuators and this feedback connection from sensing to action eventually realizes secure grasping of the object, provided that he object is of rectangular shape and motion is confined to a horizontal

  • PDF

Dynamic Stability of Vertical Columns Subjected to a Subtangential Froce (아접선력을 받는 수직 기둥의 동적 안정성)

  • 박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.313-318
    • /
    • 1996
  • This paper deals with the dynamic behavior of elastic columns under the action of subtangential forces. The above subtangential force can be-realized by the combination force between the dead load of thetip mass and the pure follower thrust. The tip mass is assumed to be a rigid body not a mass point as it has been assumed so for. The equations of motion are formulated based on extended Hamilton's principle and the finite element method. It is shown that nonconservativeness of the applied force has greatly effect on the instability type. It is found that the critical subtangential force can also be changed by consideration of the tip mass parameters taking into account of its magnitude, rotary inertia and size. The influence of the self-weight of the column on the change of the critical force is also investigated.

  • PDF

Design of composite plate girders under shear loading

  • Shanmugam, N.E.;Baskar, K.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2006
  • Experiments have been carried out on six composite and two plain steel plate girders under shear loading to understand the elastic and inelastic behaviour of such girders. The failure mechanism assumed and used to develop design equations is normally based on the failure patterns observed in the experiments. Therefore, different types of cracks and failure patterns observed in the experiments are reviewed briefly first. Based on the observed failure patterns, a design method to predict the ultimate shear capacity of composite plate girders is proposed in this paper. The values of ultimate shear capacity obtained using the proposed design method are compared with the corresponding experimental values and it is found that the proposed method is able to predict the shear capacity accurately.

A numerical solution to fluid-structure interaction of membrane structures under wind action

  • Sun, Fang-Jin;Gu, Ming
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.35-58
    • /
    • 2014
  • A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.

Shear Transfer across Cracks in Reinforced Concrete Members (RC 부재 균열면에서의 전단력 전달에 관한 고찰)

  • 홍성걸;하태훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.527-532
    • /
    • 2000
  • Cracks in reinforced concrete members are important element in structural analysis and design. It is clear from the test results that shear strength of cracked member is remarkably degraded compared with uncracked one. However, considerable amount of shear resistance by such mechanisms as aggregate interlock and dowel action is still active. There are various approaches to shear transfer estimation including finite element analysis, fracture mechanics, upper bound theory of plasticity, etc., but working out comprehensive and consistent models and manageable equations is rather difficult and remains to be improved. Shear transfer problems under cyclic loading and effective compressive strength of cracked concrete have not been adequately investigated and need further systematic research.

  • PDF