• Title/Summary/Keyword: Action equations

Search Result 148, Processing Time 0.025 seconds

STABILIZATION OF 2D g-NAVIER-STOKES EQUATIONS

  • Nguyen, Viet Tuan
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.819-839
    • /
    • 2019
  • We study the stabilization of 2D g-Navier-Stokes equations in bounded domains with no-slip boundary conditions. First, we stabilize an unstable stationary solution by using finite-dimensional feedback controls, where the designed feedback control scheme is based on the finite number of determining parameters such as determining Fourier modes or volume elements. Second, we stabilize the long-time behavior of solutions to 2D g-Navier-Stokes equations under action of fast oscillating-in-time external forces by showing that in this case there exists a unique time-periodic solution and every solution tends to this periodic solution as time goes to infinity.

Prediction of Shear Strength in High-Strength Concrete Beams without Web Reinforcement Considering Size Effect (크기효과를 고려한 복부보강이 없는 고강도 콘크리트 보의 전단강도 예측식의 제안)

  • Bae, Young-Hoon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.820-828
    • /
    • 2003
  • Recent research has indicated that the current ACI shear provision provides unconservative predictions for large slender beams and beams with low level of longitudinal reinforcement, and conservative results for deep beams. To modify some problems of ACI shear provision, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear prism in strut-tie model deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, effective depth, longitudinal reinforcement ratio, concrete compressive strength and shear span-to-depth ratio, about 300 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim &Park's equation and Zsutty's equation. The proposed shear equation is not only simpler than other shear equations, it is but also shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practical shear design.

Stage 1 compaction behavior of tool steel under die pressing (금형압축 하에서 공구강 분말의 1단계 압축거동)

  • Kim, Gi-Tae;Kim, Jong-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1073-1080
    • /
    • 1997
  • The stage 1 compaction behavior of tool steel powder under die pressing was studied. The friction effects between the powder and the die wall under different die pressing modes were also investigated. The elastoplastic constitutive equations based on the yield functions by Fleck et al. and by Shima and Oyane were implemented into a finite element program to simulate die compaction processes. Finite element calculations were compared with experimental data for densification and density distribution of tool steel powder under single and double action die pressing. Finite element calculations using the yield function by Fleck et al. agreed better with experimental data than by Shima and Oyane.

A Simulation Study on Cardiac Activation Process Using the Three Dimensional Ventricular Model (3차원 심실모델을 이용한 심장의 활성화 과정에 대한 시뮬레이션 연구)

  • Lee, Kyoung-Joung;Park, Gum-Soo;Yun, Hyung-Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.97-106
    • /
    • 1992
  • The cardiac activation process uslng three dimensional ventricular model is simulated. To study this theme, we constructed a cardiac ventricular model and simulated the cardiac activation process using the action potential duration and the activation time. The cardiac ventricular model is generated by the loglcal combination of the elliptic equations. The action potential duration could be obtained from the fact that It Is linearly distributed between model cells. The cardiac activation process was simulated by the law of "all-or-none". Based on the activation time and the action potential duration the cardiac potential at the arbitrary time after the activation of the model cell was computed. To test the validity of model, the comparison of the results of model simulation with the physiological data was performed. In conclusion, this model shows the simular results which is comparable to the 1 Pal conduction of the cardlac excitation.xcitation.

  • PDF

Simulation of the cardiac depolarization based on three dimensional ventricular model. (3차원 심실모델을 이용한 심장의 탈분극 시뮬레이션)

  • Lee, K.J.;Yoon, H.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.146-149
    • /
    • 1992
  • The cardiac depolarization model using three dimensional ventricular model is simulated. To study this theme, we constructed a cardiac ventricular model and simulated the cardiac activation process using the action potential duration and the activation time. The cardiac potential model is generated by the logical combination of the elliptic equations. The action potential duration could be obtained from the fact that it is linearly distributed between model cells. The cardiac activation process was simulated by the law of "all-or-none". Based on the activation time and the action potential duration the cardiac potential at the arbitrary time after the activation of the model cell was computed. To test the validity of model, the comparison the results of model simulation with the physiological data was performed.

  • PDF

A Real Time Automated Diagnosis Algorithm of Electrocardiogram Based-on Microcomputer (마이크로 컴퓨터를 이용한 실시간 ECG 자동진단 알고리즘)

  • 윤형로;최경훈
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.55-64
    • /
    • 1985
  • The cardiac activation process using three dimensional ventricular model is simulated.To study this theme, we constructed a cardiac ventricular model and simulated the cardiac activation process using the action potential duration and the activation time. The cardiac ventricular model is generated by the logical combination of the elliptic equations. The action potential duration could be obtained from the fact that it is linearly distributed between model cells. The cardiac activation process was simulated by the law of "all-or-none" Based on the activation time and the action potential do-ration the cardiac potential at the arbitrary time after the activation of the model cell was computed. To test the validity of model, the comparison of the results of model simulation with the physiological data was performed. In conclusion, this model shows the simular results which is comparable to the real conduction of the cardiac excitation.xcitation.

  • PDF

Proposition of a Predicting Equation for Shear Capacity of HSC Beam (단면의 모멘트를 이용한 고강도 콘크리트 보의 전단강도 예측식의 제안)

  • Choi Jeong Seon;Lee Chang Hoon;Lee Joo Ha;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.375-378
    • /
    • 2005
  • In the mechanism of beam shear failure, beam action and arch action always exist simultaneously. According to a/d ratio, the proportion and contribution between these two actions to shear capacity are merely changed. Moreover, the current codes recommendations are founded on the experimental results with normal strength concrete, the applicable range of $f'_{c}$ must be extended. Based on this mechanism and new requirement, an analytical equation is proposed for shear capacity prediction of reinforced concrete beams without stirrups. To reflect contribution change of two actions, stress variation in longitudinal reinforcement along the span is considered with Jenq and Shah Model. Dowel action and shear friction are also taken into account. Size effect is included to derive more precise equation. It is shown that the proposed equation is more accurate than other empirical equations and codes. So, it can be possible that wide range of a/d ratio is considered by one equation.

  • PDF

능동자기베어링 시스템에서 PD와 PID 제어기의 특성 비교

  • 박영진;정성종;김종선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.134-138
    • /
    • 2001
  • Basic governing equations for the Active Magnetic Bearing system are derived. Characteristic difference between PD and PID controllers are studied. It is shown that I-control action is able to minimize the steady state error and increase the stiffness in low frequency range.

Curved beam through matrices associated with support conditions

  • Gimena, Faustino N.;Gonzaga, Pedro;Valdenebro, Jose V.;Goni, Mikel;Reyes-Rubiano, Lorena S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.395-412
    • /
    • 2020
  • In this article, the values of internal force and deformation of a curved beam under any action with the firm or elastic supports are determined by using structural matrices. The article presents the general differential formulation of a curved beam in global coordinates, which is solved in an orderly manner using simple integrals, thus obtaining the transfer matrix expression. The matrix expression of rigidity is obtained through reordering operations on the transfer notation. The support conditions, firm or elastic, provide twelve equations. The objective of this article is the construction of the algebraic system of order twenty-four, twelve transfer equations and twelve support equations, which relates the values of internal force and deformation associated with the two ends of the directrix of the curved beam. This final algebraic system, expressed in matrix form, is divided into two subsystems: twelve algebraic equations of internal force and twelve algebraic equations of deformation. The internal force and deformation values for any point in the curved beam directrix are determined from these values in the initial position. The five examples presented show how to apply the matrix procedures developed in this article, whether they are curved beams with the firm or elastic support.

A Study on Dynamic Characteristics of Gear-System (기어-시스템의 동특성에 대한 연구)

  • Lee, Hyoung-Woo;Park, No-Gill
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.111-117
    • /
    • 2005
  • The vibration problems associated with gear coupled rotors have been the focus of much engineering work. These systems are complex and difficult to analyze in that they have the problems associated with conventional rotors plus those additional problems associated with the gear couplings. This paper examines the problems peculiar to the gear mesh. Because of the meshing action of gears, the elasticity of the gear teeth introduces time-varying stiffness coefficients into the governing equations of motion. This means that system response must be thought of in terms of Mathieu-type equations, where multiple-frequency response occur due to the periodic coefficients. The meshing action of the gears also couples the lateral and torsional gear motions. Gear errors, such as tooth profile and spacing errors, produce forces and torque that excite the system at multiple frequencies, some of which are much higher than shaft rotational speed. To investigate how to the time-varying stiffness in the gear teeth and the gear errors act one the dynamic response of the gear coupled rotors, a three-dimensional dynamic model with lateral-tortional oscillation is developed. The harmonic balance technique is employed to solve this mathieu-type problem.