• Title/Summary/Keyword: Action Potential

Search Result 1,313, Processing Time 0.033 seconds

The Role of $K^+$ Channels on Spontaneous Action Potential in Rat Clonal Pituitary $GH_3$ Cell Line

  • Rhim, Hye-Whon;Baek, Hye-Jung;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.2
    • /
    • pp.81-90
    • /
    • 2000
  • The types of $K^+$ channel which determine the pattern of spontaneous action potential (SAP) were investigated using whole-cell variation of patch clamp techniques under current- and voltage-clamp recording conditions in rat clonal pituitary $GH_3$ cells. Heterogeneous pattern of SAP activities was changed into more regular mode with elongation of activity duration and afterhyperpolarization by treatment of TEA (10 mM). Under this condition, exposure of the class III antiarrhythmic agent E-4031 $(5\;{\mu}M)$ to $GH_3$ cells hardly affected SAP activities. On the other hand, the main $GH_3$ stimulator thyrotropin-releasing hormone (TRH) still produced its dual effects (transient hyperpolarization and later increase in SAP frequency) in the presence of TEA. However, addition of $BaCl_2$ (2 mM) in the presence of TEA completely blocked SAP repolarization process and produced membrane depolarization in all tested cells. This effect was observed even in TEA-untreated cells and was not mimicked by higher concentration of TEA (30 mM). Also this barium-induced membrane depolarization effect was still observed after L-type $Ca^{2+}$ channel was blocked by nicardipine $(10\;{\mu}M).$ These results suggest that barium-sensitive current is important in SAP repolarization process and barium itself may have some depolarizing effect in $GH_3$ cells.

  • PDF

Local Difference of Na-Pump Activity in the Rabbit Sinoatrial Node (토끼 동방결절 부위에 따른 Na-Pump활동도의 차이에 관한 연구)

  • Seo, Jong-Jin;Moon, Hyung-Ro;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.19 no.2
    • /
    • pp.113-125
    • /
    • 1985
  • Electrophysiological difference of the central and peripheral area of the sinoatrial node in the rabbit was studied by glass microelectrode technique. Effects of $K^+,\;Na^+,\;Cs^+,$ adrenaline and ouabain on the action potential of the two areas were investigated, and transient hyperpolarization ($K^+-induced$ hyperpolarization) which developed following readmission of potassium after having pre-treated with $K^+-free$ Tyrode solution for 10 minutes was analyzed. The results obtained were as follows ; 1) The frequency of the spontaneous action potential recorded in the periphery of the SA node was faster than the central area. Reduction by $Cs^+$ and increase by O mM $K^+$, $10^{-6}M$ adrenaline and $10^{-6}M$ ouabain in the frequency of action potential were noticed more prominently in the peripheral than the central area. On the contrary, the frequency in the central area was more decreased than the Peripheral area by 13 mH $K^+$ and 1 mM $Co^{2+}$. 2) The amplitude of the K+_induced hyperpolarization was very small in the central area but large in the peripheral area. Transient hyperpolarization was abolished by ouabain and low sodium, and decreased by cooling the tissue $(17^{\circ}C)$. 3) By changing the concentration of $Ca^{2+}$ in the perfusate, the amplitude and the rate of transient hyperpolarization were increased in the high $Ca^{2+}$ concentration. It could be concluded that the central area of the SA node is less susceptible to the inhibition of Na-Pump and more susceptible to Ca-blocker and high concentration of $K^+$. The Na-Pump activity of the central area measured by means of transient hyperpolarization is found to be much less active than that of the peripheral area.

  • PDF

Effects of Paroxetine on a Human Ether-a-go-go-related Gene (hERG) K+ Channel Expressed in Xenopus Oocytes and on Cardiac Action Potential

  • Hong, Hee-Kyung;Hwang, Soobeen;Jo, Su-Hyun
    • International Journal of Oral Biology
    • /
    • v.43 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • $K^+$ channels are key components of the primary and secondary basolateral $Cl^-$ pump systems, which are important for secretion from the salivary glands. Paroxetine is a selective serotonin reuptake inhibitor (SSRI) for psychiatric disorders that can induce QT prolongation, which may lead to torsades de pointes. We studied the effects of paroxetine on a human $K^+$ channel, human ether-a-go-go-related gene (hERG), expressed in Xenopus oocytes and on action potential in guinea pig ventricular myocytes. The hERG encodes the pore-forming subunits of the rapidly-activating delayed rectifier $K^+$ channel ($I_{Kr}$) in the heart. Mutations in hERG reduce $I_{Kr}$ and cause type 2 long QT syndrome (LQT2), a disorder that predisposes individuals to life-threatening arrhythmias. Paroxetine induced concentration-dependent decreases in the current amplitude at the end of the voltage steps and hERG tail currents. The inhibition was concentration-dependent and time-dependent, but voltage-independent during each voltage pulse. In guinea pig ventricular myocytes held at $36^{\circ}C$, treatment with $0.4{\mu}M$ paroxetine for 5 min decreased the action potential duration at 90% of repolarization ($APD_{90}$) by 4.3%. Our results suggest that paroxetine is a blocker of the hERG channels, providing a molecular mechanism for the arrhythmogenic side effects of clinical administration of paroxetine.

Changes in Compound Muscle Action Potential Depending on Pressure Level of Blood Flow During KAATSU Training (가압훈련의 혈류 압박 정도에 따른 복합근 활동전위의 변화)

  • Kim, Jong-Soon
    • PNF and Movement
    • /
    • v.18 no.3
    • /
    • pp.393-401
    • /
    • 2020
  • Purpose: In recent years, there has been increasing interest in using blood flow-restricted exercise (BFRE) or KAATSU training. The KAATSU training method, which partially restricts arterial inflow and fully restricts venous outflow in the working musculature during exercise at reduced exercise intensities, has been proven to result in substantial increases in both muscle hypertrophy and strength. The purpose of this study was to investigate the proper level of pressure for KAATSU training using compound muscle action potential (CMAP) analysis. Methods: Twenty-two healthy adults voluntarily participated in this study. CMAP was conducted by measuring the terminal latency and amplitude using a motor nerve conduction velocity test. For reference-line, supramaximal electrical stimulation was applied to the median nerves of the participants to obtain CMAP for the abductor pollicis brevis. For baseline, the intensity of the electrical stimulation was decreased to a level at which the CMAP amplitude was about a third of the CMAP amplitude obtained by the supramaximal electrical stimulation. The pressure levels for the KAATSU were set as a systolic blood pressure (strong pressure), the median values of systolic and diastolic blood pressure (intermediate pressure), and diastolic blood pressure (weak pressure). In the KAATSU condition, CMAP was performed under the same conditions as baseline after low-intensity thumb abduction exercises were performed at the subjects' own pace for one minute. Results: As the pressure increased, the CMAP amplitude was significantly increased, signifying that more muscle fibers were recruited. Conclusion: This study found that KAATSU training recruited more muscle fibers than low-intensity exercise without the restriction of blood flow.

Effects of Adenosine on the Action Potentials of Rabbit SA Nodal Cells (동방결절 활동전압에 대한 아데노신 효과)

  • Kim, Ki-Whan;Ho, Won-Kyung
    • The Korean Journal of Physiology
    • /
    • v.18 no.1
    • /
    • pp.19-35
    • /
    • 1984
  • Since the first report of Drury and $Szent-Gy{\ddot{o}}rgyi$ in 1929, the inhibitory influences of adenosine on the heart have repeatedly been described by many investigators. These studies have shown that adenosine and adenine nucleotides have overall depressant effects, similar to those of acetylcholine. Heart beats become slow and weak. It is also well known that adenosine is a potent endogenous coronary vasodilator. Many investigations on the working mechanisms of adenosine have been focused mainly on the effects of the coronary blood flow. However, the cellular mechanisms underlying the inhibitory action of adenosine on sinus node are not well understood yet. Thus, this study was undertaken to examine the behavior of rabbit SA node under influence of adenosine. In these series of experiments three kinds of preparations were used: whole atrial pair, left atrial strip, and isolated SA node preparations. The electrical activity of SA node was recorded with conventional glass microelectrodes 30 to 50 $M{\Omega}$. The preparations were superfused with bicarbonate-buffered Tyrode solution of pH 7.35 and aerated with a gas mixture of $3%\;CO_2-97%\;O_2$ at $35^{\circ}C$. In whole atrial pair, adenosine suppressed sinoatrial rhythm in a dose-dependent manner. Effect of adenosine on atrial rate appeared at the concentration of $10^{-5}M$ and was enhanced in parallel with the increase in adenosine concentration. Inhibitory action of adenosine on pacemaker activity was more prominent in the preparation pretreated with norepinephrine, which can steepen the slope of pacemaker potential by increasing permeability of $Ca^{+2}$. Calcium ions in perfusate slowly produced a marked change in sinoatrial rhythm. Elevation of the calcium concentration from 0.3 to 8 mM increased the atrial rate from 132 to 174 beats/min, but over 10 mM $Ca^{+2}$ decreased. The inhibitory effect of adenosine on sinoatrial rhythm developed very rapidly. Atrial rate was recovered promptly from the adenosine-induced suppression by the addition of norepinephrine, but extra $Ca^{+2}$ was less suitable to restore the suppression of atrial rate. Adenosine suppressed also atrial contractility in the same dosage range that restricted pacemaker activity, even in the reserpinized preparation. In isolated SA node preparation, spontaneous firing rate of SA node at $35^{\circ}C$(mean{\pm}SEM, n=16) was $154{\pm}3.3\;beats/min. The parameters of action potentials were: maximum diastolic potential(MDP), $-73{\pm}1.7\;mV: overshoot(OS), $9{\pm}1.4\;mV: slope of pacemaker potential(SPP), $94{\pm}3.0\;mV/sec. Adenosine suppressed the firing rate of SA node in a dose-dependent manner. This inhibitory effect appeared at the concentration of $10^{-6}M$ and was in parallel with the increase in adenosine concentration. Changes in action potential by adenosine were dose-dependent increase of MDP and decrease of SPP until $10^{-4}M$. Above this concentration, however, the amplitude of action potential decreased markedly due to the simultaneous decrease of both MDP and OS. All these effects of adenosine were not affected by pretreatment of atropine and propranolol. Lowering extra $Ca^{2+}$ irom 2 mM to 0.3 mM resulted in a marked decrease of OS and SPP, but almost no change of MDP. However, increase of perfusate $Ca^{2+}$ from 2 mM to 6 or 8 mM produced a prominent decrease of MDP and a slight increase of OS and SPP. Dipyridamole(DPM), which is known to block the adenosine transport across the cell membrane, definately potentiated the action of adenosine. The results of this experiment suggest that adenosine suppressed pacemaker activity and atrial contractility simultaneously and directly, by decreasing $Ca^{2+}-permeability$ of nodal and atrial cell membranes.

  • PDF

Modulation in Action Potentials of Rat Hippocampal Neurons Measured on Multi-Channel Electrodes During Ultrasound Stimulation (다채널 전극을 이용한 초음파 자극 시 쥐 해마 신경 세포의 활동 전위 검출)

  • Han, H.S.;Jeon, H.J.;Hwang, S.Y.;Lee, Y.N.;Byun, K.M.;Jun, S.B.;Kim, T.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.177-181
    • /
    • 2013
  • It is known that ultrasound affects action potentials in neurons, but the underlying principles of ultrasonic neural stimulation are not clearly elucidated yet. In this study, we measured the action potentials of rat hippocampal neurons cultured on multi-electrode arrays during ultrasound stimulation. From most of electrodes, it was observed that the ultrasound stimulation increased the frequencies of action potentials (i.e., spikes) during ultrasound stimulation.

Response of Electrocardiogram to Mirror carp, Cyprinus carpio of Body Length (체장에 따른 향어, Cyprinus carpio의 심전도)

  • 김영기;양용림;안영일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.4
    • /
    • pp.284-288
    • /
    • 2002
  • The authors examined the response of electrocardiogram (ECG) to Mirror carp, Cyprinus carpio of body length. The experiments were performed of three classes (10~15, 15~20 and 20~25cm) were given to fishes with an electrode inserted into their bodies and then their ECGs were recorded continuously for 30 minutes in 16-18$^{\circ}C$. The results which are divided into by day and by night and then analyzed by fishes' conditions are as follows; 1 In case of body length 10~15 cm, the average heart rate 43.4 beat/min by day and 45.9 beat/min by night, the average action potential 4.38 $mutextrm{V}$ by day and 3.64 $mutextrm{V}$ by night, in narcotism condition(0~9 min). the average heart rate 69.4 beat/min by day and 67.4 beat/min by night, the average action potential 3.82 $mutextrm{V}$ by day and 3.50 $mutextrm{V}$ by night, in stable condition(9~30 min). 2. In case of body length 15~20 cm, the average heart rate 42.2 beat/min by day and 45.4 beat/min by night, the average action potential 4.13 $mutextrm{V}$ by day and 3.95 $mutextrm{V}$ by night, in narcotism condition(0-5 min). the average heart rate 67.6 beat/min by day and 65.3 beat/min by night, the average action potential 4.58$mutextrm{V}$ by day and 4.61 $mutextrm{V}$ by night, in stable condition (5~30 min). 3. In case of body length 20~25 cm, the average heart rate 47.5 beat/min by day and 47.5 beat/min by night, the average action potential 4.81 $mutextrm{V}$ by day and 4.20 $mutextrm{V}$ by night, in narcotism condition(0-4 min). the average heart rate 67.5 bea/min by day and 64.8 beat/min by night, the average action potential 5.31 $mutextrm{V}$ by day and 4.90 $mutextrm{V}$ by night, in stable condition (4~30 min).

A Study on Estimation of Numbers of Motor Unit related to the Widths and Distribution of Endplate in Neuromuscular Junction (신경근육 접합부의 종판 폭과 분포에 따른 운동단위 수의 추정에 관한 연구)

  • Lee, Ho-Yong;Kim, Duck-Young;Park, Jung-Ho;Jung, Chul-Ki;Kim, Sung-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.81-92
    • /
    • 2011
  • In this paper, a new method to estimate the number of MU (motor unit) related to the widths and distribution of end plate in NMJ (neuromuscular junction) of biceps brachii is proposed by varying muscle parameter statistically in EMG model. This work is done by designing MU-simulator and EPZ-simulator. The proposed method was compared with the results of previous researchers. The proposed MU-simulator generates SMUAP (single motor unit action potential) and CMAP (compound muscle action potential) signal similar to detected SMUAP and CMAP signal obtained from muscle. The EPZ-simulator estimate the numbers of MU by varying the widths and distribution of end plate in neuromuscular junction of muscle. The results shows that the numbers of MU was estimated about 450 ea. and muscle fibers was about 340 ea., end plate widths was about 6 mm, and end plate was randomly distributed. The proposed method may be comparable with the method of anatomical studies.

Electrophysiological Changes after Low-Power Infrared Laser Irradiation on Injured Rat Sciatic Nerves (손상된 흰쥐의 좌골신경에 저출력 레이저 조사후 전기생리학적 변화)

  • Bae Chun-Sik;Shin Soo-Beom;Kim Kweon-Young
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.114-119
    • /
    • 2006
  • The purpose of this study was to determine effects of the Ga-As (Gallium-Arsenide) Dens-Bio laser on mechanically injured sciatic nerves of rats. The improvement of the injured rat sciatic nerve was evaluated by measuring of nerve conduction velocity and amplitude of compound muscle action potential. The sciatic nerves of forty male Sprague-Dawley rats were compressed with hemostatic forceps for 30 seconds. The experimental group was divided into 4 subgroups according to the duration of treatment. Lower power infrared laser irradiation was done transcutaneously to the injured sciatic nerve area, 3 minutes daily to each of four treatment groups for 1, 3, 5, and 7 weeks, respectively. Compound muscle action potential and nerve conduction velocity of sciatic nerve were obtained before nerve injury and at 1, 3, 5, and 7 weeks after injury. There were significant difference of the nerve conduction velocity and amplitudes of compound muscle action potential between the treatment group and non-treatment group at 1, 3, and 5 weeks after laser treatment. However, there were no differences found between the electrophysiologic parameters that were measured after 7 weeks in two groups. There was significant correlation between the increment of compound muscle action potential and nerve conduction velocity after time course according to laser treatment. In conclusion, the low power laser treatment had improved the sciatic nerve function, and therefore these results may provide the basic data to clarify the neurological recovery and treatment after incomplete peripheral nerve injury.

Effects of $K^+$ and $H^+$ on electromechanical properties of rabbit papillary muscle (토끼 유두근의 전기적 및 기계적 성질에 미치는 칼륨 및 수소이온의 영향)

  • Kim, Jun;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.16 no.1
    • /
    • pp.13-23
    • /
    • 1982
  • Effects of external pH and potassium concentrations on the electrical and mechanical properties were investigated on rabbit papillary muscle. Papillary muscles were perfused in horizontal chamber with Tris Tyrode solutions and action potential along with isometric tension was recorded simultaneously. Potassium concentrations were varied between 1 and 12 mM at low(6.9), normal(7.4) and high (7.9) external pH. The following results were obtained: 1) On rasing the potassium concentration from 1 to 12 mM resting membrane potentials decreased from $-88.8{\pm}2.8$ to $-66.4{\pm}1.2\;mV$ at normal pH and the amplitude of action potential decreased from $115.1{\pm}0.7$ to $97.5{\pm}2.8\;mV$. On lowering the potassium concentration, membrane hyperpolarized and at 1 mM potassium concentration resting potentials were $-107{\pm}2.2\;mV$. Duration of action potential especially $APD_{60}{\sim}APD_{90}$ increased($APD_{90}$: $214{\pm}15.8\;ms$ at 1 mM $K^+$ to $287{\pm}18.1\;ms$ at 12 mM $K^+$). 2) During acidosis membranes hyperpolarized by more than 20 mV within 1 min. and then slow recovery was observed during the following 10 min. During alkalosis membranes depolarized about 10 mV, which were maintained until washing with normal Tyrode solutions. 3) On lowering the external pH(7.9-6.5), duration of action potential increased progressively and it was most prominent at pH 6.5 and $K^+$ 1mM. 4) Magnitude of developed tension was $0.6{\pm}0.14\;g/mm^2$ at normal pH and potassium concentration (stimulus frequency : 60/min). Relative isometric tension to normal value increased along the increment of stimulus frequency($44.2{\pm}4.2%$ at 6/min to $271{\pm}86.7%$ at 180/min). Force-frequency relations were altered quantitatively during the perfusion with different external pH solutions. 5) Developed tension did not show marked variation within the range of $2{\sim}8\;mM$ potassium concentrations. Positive inotropism was observed at less than 2 mM $K^+$ and negative inotropism beyond 12 mM $K^+$ concentrations. From the above results we concluded that the effects of potassium ion concentration on electrical and mechanical properties of rabbit papillary muscle are related to the changes in surface negative charge due to acid base disturbances.

  • PDF