• Title/Summary/Keyword: Actins

Search Result 8, Processing Time 0.019 seconds

Isolation and Molecular Phylogeny of Three Muscle Actin Isoforms of an Endangered Freshwater Fish Species Hemibarbus mylodon (Cypriniformes; Cyprinidae)

  • Kim, Keun-Yong;Nam, Yoon-Kwon
    • Journal of Aquaculture
    • /
    • v.22 no.1
    • /
    • pp.83-91
    • /
    • 2009
  • The Korean doty barbel Hemibarbus mylodon (Cypriniformes; Cyprinidae) is a critically endangered freshwater fish species mainly because of its natural habitat degradation. Three full-length complementary DNA (cDNA) clones representing different muscle actin isoforms were isolated and characterized. The three muscle actin isoforms were 1,294-1,601 bp long with the identical open reading frames of 1,134 bp with the deduced amino acid residues of 377. They showed 83.9-87.2% identities in the coding nucleotide level and 96.8-98.1% identities in the amino acid level. Phylogenetic analysis with the coding nucleotide sequences revealed that three muscle actin isoforms of H. mylodon formed strongly supported monophyletic groups with one of cypriniform skeletal $\alpha$-actin (acta1), cypriniform aortic $\alpha$-actins (acta2), and uncharacterized Danio rerio muscle actin isoform/Salmo trutta slow muscle actin (a novel muscle actin type). Our phylogenetic tree further suggested that cypriniform acta2 only showed the orthologous relationship to tetrapod acta2. Other multiple actin isoforms from diverse teleostean taxa were however clustered to no tetrapod orthologs, i.e., acta1, cardiac $\alpha$-actins (aetc1), acta2, and enteric $\gamma$-actin (actg2). This result strongly suggested that teleostean muscle actins have experienced different and complicated evolutionary history in comparison to mammalian counterparts.

An Ultrastructural Study of Tentacular Retractor Muscle of Chinese Mystery Snail, Cipangopaludina chinensis malleata Reeve (논우렁이 촉수(觸手) 수축근(收縮筋)의 미세구조(微細構造))

  • Song, Yong-Jik;Kim, Woo-Kap;Kim, Chang-Whan
    • Applied Microscopy
    • /
    • v.17 no.2
    • /
    • pp.31-40
    • /
    • 1987
  • The tentacular retractor muscle has many arrays of muscle fiber bundles under the epithelial layer. Most of muscle fiber bundles are arranged in parallel to the longitudinal axes of muscle fibers and a small number of them perpendiculary to them. These smooth muscle cells are filled with compactly arranged myosins and actins. These microfilaments, when the tentacle is protracted, keep abreast with straight for-ward-lined shapes while these microfilaments, when it is retracted, with curved shapes. The foldings in the sarcolemma of the muscle cell, when the tentacle is retracted, lead to the formation of normal subsurface tubules along with which a few mitochondria are included. It is thought that the formation of the sarcolemmal differentiation like the subsurface tubules has a close relation with the protraction and retraction of the tentacle. Mitochondria are found throughout the muscle cell, and sarcoplasmic reticulum (SR) developed greatly in the exoplasm close to the sarcolemma and associated with the cell membrane. Dense bodies are distributed irregularly and thin filaments are scattered around the thick filament in cross-sections, but the thin filaments may be arranged in complete or partial orbits around thick filaments. Complete orbits are infrequent.

  • PDF

Novel Macrolide Actin-inhibitors Isolated from Sea Sponges

  • Karaki, Hideaki;Ozaki, Hiroshi
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.105-108
    • /
    • 2001
  • Several marine toxins with macrolide structure have been found to act on actin. One of these toxins is mycalolide B isolated from the genus Mycale. This compound belongs to macrolide antibiotics and consists of tris-oxazole with strong cytotoxic activity ($IC_{50}$: 10-50 nM for growth of L1210 murine leukemia cells). This compound was found to be an actin-depolymerizing agent with the mode of action distinct from that of the known actin inhibitor, cytochalasin D. Tolytoxin, a macrolide isolated from cyano-bacteria with similar chemical structure to mycalolide B, seems to have similar effect. Another macrolide compound, aplyronine A, showed the effects similar to those of mycalolide B. Although bistheonellide A, a dimeric macrolide, did not show a severing effect, it de polymerized F-actin and sequestered G-actin by forming 1 : 2 complex with G-actins. Swinholide A has a structure and effects similar to those of bistheonel-lide A. In conclusion, mycalolide B, tolytoxin, aplyronine A, bistheonellide A and swinholide A are the members of "actin de polymerizing macrolide" the mechanism of which is different from that of cytochalasin D.halasin D.

  • PDF

Molecular and biochemical characterization of a novel actin bundling protein in Acanthamoeba

  • Alafag Joanna It-itan;Moon Eun-Kyung;Hong Yeon-Chul;Chung Dong-Il;Kong Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.4 s.140
    • /
    • pp.331-341
    • /
    • 2006
  • Actin binding proteins play key roles in cell structure and movement particularly as regulators of the assembly, stability and localization of actin filaments in the cytoplasm. In the present study, a cDNA clone encoding an actin bundling protein named as AhABP was isolated from Acanthamoeba healyi, a causative agent of granulomatous amebic encephalitis. This clone exhibited high similarity with genes of Physarum polycephalum and Dictyostelium discoideum, which encode actin bundling proteins. Domain search analysis revealed the presence of essential conserved regions, i.e., an active actin binding site and 2 putative calcium binding EF-hands. Transfected amoeba cells demonstrated that AhABP is primarily localized in phagocytic cups, peripheral edges, pseudopods, and in cortical cytoplasm where actins are most abundant. Moreover, AhABP after the deletion of essential regions formed ellipsoidal inclusions within transfected cells. High-speed co-sedimentation assays revealed that AhABP directly interacted with actin in the presence of up to $10{\mu}M$ of calcium. Under the electron microscope, thick parallel bundles were formed by full length AhABP, in contrast to the thin actin bundles formed by constructs with deletion sites. In the light of these results, we conclude that AhABP is a novel actin bundling protein that is importantly associated with actin filaments in the cytoplasm.

Cloning and mRNA Expression of an Actin cDNA from the Mulberry Longicorn Beetle, Apriona germari

  • Gui, Zhongzheng;Lee, Kwang Sik;Wei, Yadong;Yoon, Hyung Joo;Kim, Iksoo;Guo, Xijie;Sohn, Hung Dae;Jin, Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.187-191
    • /
    • 2004
  • Actin is a ubiquitous and highly conserved protein found in eukaryotic organisms. In this study, we describe the cDNA cloning and mRNA expression of an actin gene from the mulberry longicorn beetle, Apriona germari. The A. germari actin cDNA is 1524 bp containing a complete 1128 bp open reading frame that encodes a polypeptide of 376 amino acid residues with a predicted molecular weight of about 41.5 kDa. The deduced amino acid sequence of the A.germari actin cDNA showed 99% protein sequence identity to Homalodisca coagulata actin, differing at only two amino acid positions, and 92-98% protein sequence identity to known insect species actins. The predicted three-dimensional structure of A. germari actin revealed the four residue hydrophobic pulg loop characteristic of the actin family. Northern blot analysis showed that A. germari actin is highly expressed in epidermis and muscle, and less strongly in midgut, but not in the fat body of A. germari larva.

The proper concentrations of dextrose and lidocaine in regenerative injection therapy: in vitro study

  • Woo, Min Seok;Park, Jiyoung;Ok, Seong-Ho;Park, Miyeong;Sohn, Ju-Tae;Cho, Man Seok;Shin, Il-Woo;Kim, Yeon A
    • The Korean Journal of Pain
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2021
  • Background: Prolotherapy is a proliferation therapy as an alternative medicine. A combination of dextrose solution and lidocaine is usually used in prolotherapy. The concentrations of dextrose and lidocaine used in the clinical field are very high (dextrose 10%-25%, lidocaine 0.075%-1%). Several studies show about 1% dextrose and more than 0.2% lidocaine induced cell death in various cell types. We investigated the effects of low concentrations of dextrose and lidocaine in fibroblasts and suggest the optimal range of concentrations of dextrose and lidocaine in prolotherapy. Methods: Various concentrations of dextrose and lidocaine were treated in NIH-3T3. Viability was examined with trypan blue exclusion assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Migration assay was performed for measuring the motile activity. Extracellular signal-regulated kinase (Erk) activation and protein expression of collagen I and α-smooth muscle actin (α-SMA) were determined with western blot analysis. Results: The cell viability was decreased in concentrations of more than 5% dextrose and 0.1% lidocaine. However, in the concentrations 1% dextrose (D1) and 0.01% lidocaine (L0.01), fibroblasts proliferated mildly. The ability of migration in fibroblast was increased in the D1, L0.01, and D1 + L0.01 groups sequentially. D1 and L0.01 increased Erk activation and the expression of collagen I and α-SMA and D1 + L0.01 further increased. The inhibition of Erk activation suppressed fibroblast proliferation and the synthesis of collagen I. Conclusions: D1, L0.01, and the combination of D1 and L0.01 induced fibroblast proliferation and increased collagen I synthesis via Erk activation.

Substrate roughness induces the development of defective E-cadherin junctions in human gingival keratinocytes

  • Jin, Chengbiao;Lee, Gayoung;Oh, Changseok;Kim, Hyun Jung;Kim, Hyun-Man
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.2
    • /
    • pp.116-131
    • /
    • 2017
  • Purpose: The entry of bacteria or harmful substances through the epithelial seal of human gingival keratinocytes (HGKs) in the junctional epithelium (JE) is blocked by specialized intercellular junctions such as E-cadherin junctions (ECJs). However, the influence of roughened substrates, which may occur due to apical migration of the JE, root planing, or peri-implantitis, on the development of the ECJs of HGKs remains largely unknown. Methods: HGKs were cultured on substrates with varying levels of roughness, which were prepared by rubbing hydrophobic polystyrene dishes with silicon carbide papers. The activity of c-Jun N-terminal kinase (JNK) was inhibited with SP600125 or by transfection with JNK short hairpin RNA. The development of intercellular junctions was analyzed using scanning electron microscopy or confocal laser scanning microscopy after immunohistochemical staining of the cells for E-cadherin. The expression level of phospho-JNK was assessed by immunoblotting. Results: HGKs developed tight intercellular junctions devoid of wide intercellular gaps on smooth substrates and on rough substrates with low-nanometer dimensions (average roughness $[Ra]=121.3{\pm}13.4nm$), although the ECJs of HGKs on rough substrates with low-nanometer dimensions developed later than those of HGKs on smooth substrates. In contrast, HGKs developed short intercellular junctions with wide intercellular gaps on rough substrates with mid- or high-nanometer dimensions ($Ra=505.3{\pm}115.3nm$, $867.0{\pm}168.6nm$). Notably, the stability of the ECJs was low on the rough substrates, as demonstrated by the rapid destruction of the cell junction following calcium depletion. Inhibition of JNK activity promoted ECJ development in HGKs. JNK was closely associated with cortical actin in the regulation of ECJs in HGKs. Conclusions: These results indicate that on rough substrates with nanometer dimensions, the ECJs of HGKs develop slowly or defectively, and that this effect can be reversed by inhibiting JNK.

MORPHOLOGICAL CHARACTERISTICS OF ODONTOBLAST IN NFI-C KNOCK/OUT MICE (Nuclear Factor I-C 결손 생쥐에서 상아모세포의 형태학적 특징)

  • Ko, Seung-Bak;Lee, Chang-Seop;Lee, Nan-Young;Lee, Sang-Ho;Kim, Heung-Joong;Park, Joo-Cheol
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.181-191
    • /
    • 2006
  • NFI-C null mice demonstrated aberrant odontoblast differentiation and thus abnormal dentin formation while other tissues/organs in the body, including ameloblasts, appear to be unaffected and normal. However little is known about the mechanism of NFI-C function in odontoblast differentiation and dentin formation. Odontoblasts are tall, highly polarized cells that are responsible for formation and maintenance of the predentin and dentin. An indication of their polarity is the acquisition of specialized intercellular junctions. As preodontoblasts differentiate into odontoblasts, they are Joined and attached at the apical end by well developed terminal webs of cytoskeletal actins, and associated tight as well as adherent njunctions. In this study, in order to investigate if disruption of the NFI-C gene interferes with formation of a specific or other structural proteins of the intercellular junctions, we examined morphological characteristic of the aberrant odontoblast in NFI-C null mice using light and electron microscope. In addition, we determined the expression of major structural proteins of intercellular junctions, ZO-1 and occludin, during the differentiation of odontoblasts using immunohitochemistry. The results were as follows : 1. In light microscopy, abnormal odontoblasts of incisors of the NFI-C null mice were round in shape, lost their polarity, and trapped in osteodentin-like mineralized tissue. Mutant molars have relatively normal crowns, but short and abnormal differentiating adontoblasts in root formation area. 2. Electron microscopy of abnormal odontoblasts revealed the dissociation of the round osteoblast-like cells, the loss of their cellular polarity, and the absence of an intercellular junctional complex known as the tight junctions. 3. A mutant incisor showed labeling for ZO-1 at the proximal and distal ends of secreting ameloblasts, while staining for ZO-1 was not observed in the abnormal odontoblasts. 4. A normal incisor showed immunoreactivity for occludin in the differentiating odontoblasts. However, staining for occludin was not observed in the abnormal odontoblasts of mutant incisor. These results suggest that NFI-C gene causes dissociation of odontoblast and thus abberant odontoblast differentiation and abnormal dentin formation by interfering with the formation of intercellular junctions.

  • PDF