• Title/Summary/Keyword: AcrAB Efflux Pump

Search Result 6, Processing Time 0.023 seconds

Putative Negative Regulation of Novel MarB along with MarA upon the Function of AcrAB/TolC Efflux Pump of Escherichia coli K-12 (대장균 K-12의 AcrAB/TolC Efflux Pump의 기능에 대한 MarB와 MarA의 추정적 억제조절)

  • Byung-Tae Park
    • Biomedical Science Letters
    • /
    • v.5 no.1
    • /
    • pp.27-40
    • /
    • 1999
  • This study was focused on the evaluation of MarB alongside with MarA for its regulatory effects upon the efflux function of AcrAB pump, which were induced or not, perhaps as a target. Transductions of marR and/or acrAB mutation which were derived from Mar and/or AcrAB mutants of wild type E. coli K-12, respectively, into the multicopy plasmid in wild type E. coli backgrounds or into the chromosome of isogenic parents were done. Minimal inhibitory concentration (MIC) of transduced mutants was compared with their original mutants. This study reports the indirect evidences that suggests a model in which MarB along with MarA have a putative negative regulatory effect upon the efflux function of AcrAB/TolC pump while MarA alone have a positive regulatory effect to the expression of acrRAB operon at transcription level. The target of MarB with MarA for its putative negative regulator might be the AcrAB efflux pump. Another efflux system (s) might be negatively regulated by MarB with MarA, and be involved in the efflux of antibiotics which were otherwise extruded preferentially by AcrAB efflux pump.

  • PDF

AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism

  • Soojin Jang
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.326-334
    • /
    • 2023
  • Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors.

Analysis of the Fluoroquinolone Antibiotic Resistance Mechanism of Salmonella enterica Isolates

  • Kim, Soo-Young;Lee, Si-Kyung;Park, Myeong-Soo;Na, Hun-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1605-1612
    • /
    • 2016
  • Quinolone-resistant Salmonella strains were isolated from patient samples, and several quinolone-sensitive strains were used to analyze mutations in the quinolone resistance-determining region (QRDR) of gyrA, gyrB, parC, and parE and to screen for plasmid-mediated quinolone resistance. Among the 21 strains that showed resistance to nalidixic acid and ciprofloxacin (MIC 0.125-2.0 μg/ml), 17 strains had a mutation in QRDR codon 87 of gyrA, and 3 strains had a single mutation (Ser83 → Phe). Another cause of resistance, efflux pump regulation, was studied by examining the expression of acrB, ramA, marA, and soxS. Five strains, including Sal-KH1 and Sal-KH2, showed no increase in relative expression in an analysis using the qRT-PCR method (p < 0.05). In order to determine the genes involved in the resistance, the Sal-9 isolate that showed decreased susceptibility and did not contain a mutation in the gyrA QRDR was used to make the STM (MIC 8 μg/ml) and STH (MIC 16 μg/ml) ciprofloxacin-resistant mutants. The gyrA QRDR Asp87 → Gly mutation was identified in both the STM and STH mutants by mutation analysis. qRT-PCR analysis of the efflux transporter acrB of the AcrAB-TolC efflux system showed increased expression levels in both the STM (1.79-fold) and STH (2.0-fold) mutants. In addition, the expression of the transcriptional regulator marA was increased in both the STM (6.35-fold) and STH (21.73-fold) mutants. Moreover, the expression of soxS was increased in the STM (3.41-fold) and STH (10.05-fold) mutants (p < 0.05). Therefore, these results indicate that AcrAB-TolC efflux pump activity and the target site mutation in gyrA are involved in quinolone resistance.

Structure of the Tripartite Multidrug Efflux Pump AcrAB-TolC Suggests an Alternative Assembly Mode

  • Kim, Jin-Sik;Jeong, Hyeongseop;Song, Saemee;Kim, Hye-Yeon;Lee, Kangseok;Hyun, Jaekyung;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.180-186
    • /
    • 2015
  • Escherichia coli AcrAB-TolC is a multidrug efflux pump that expels a wide range of toxic substrates. The dynamic nature of the binding or low affinity between the components has impeded elucidation of how the three components assemble in the functional state. Here, we created fusion proteins composed of AcrB, a transmembrane linker, and two copies of AcrA. The fusion protein exhibited acridine pumping activity, suggesting that the protein reflects the functional structure in vivo. To discern the assembling mode with TolC, the AcrBA fusion protein was incubated with TolC or a chimeric protein containing the TolC aperture tip region. Three-dimensional structures of the complex proteins were determined through transmission electron microscopy. The overall structure exemplifies the adaptor bridging model, wherein the funnel-like AcrA hexamer forms an intermeshing cogwheel interaction with the ${\alpha}$-barrel tip region of TolC, and a direct interaction between AcrB and TolC is not allowed. These observations provide a structural blueprint for understanding multidrug resistance in pathogenic Gram-negative bacteria.

Functional Analysis of the marB gene of Escherichia coli K-12

  • Lee, Chang-Mi;Park, Byung-Tae
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.153-161
    • /
    • 2004
  • Antibiotic resistance is often associated with the production of inner membrane proteins (for example, AcrAB/TolC efflux pump) that are capable to extrude antibiotics, detergents, dyes and organic solvents. In order to evaluate the unknown MarB function of Escherichia coli, especially focused on the function of OmpF porin, several mutants were construted by T4GT7 transduction. MarA plays a major roles in mar (multiple antibiotic resistance) phenotype with AcrAB/TolC efflux pump in E. coli K-12. Futhermore, MarA decreases OmpF porin expression via micF antisense RNA. Expression of acrAB is increased in strains containing mutation in marR, and in those carrying multicopy plasmid expressing marA. MarB protein of E. coli K-12 showed its activity at OmpF porin & TolC protein as target molecule. Some paper reported MarB positively regulates OmpF function. MarA shows mar phenotype, and MarB along with MarA show decreased MIC through OmpF function. By this experiment, MarB could decrease MIC through the OmpF porin & TolC protein as target.

  • PDF

Prevalence and Molecular Characterization of Quinolone Antibiotic Resistance in Escherichia coli Isolates from Raw Bulk Milk in Gyeonggi-do (원유시료에서 분리한 대장균의 퀴놀론 항생제 내성 기전)

  • Kang, Sowon;Lee, Sangjin;Choi, Sungsook
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.185-190
    • /
    • 2014
  • The aim of this study was to investigate the prevalence of quinolone resistant E. coli from raw bulk milk and to characterize the resistance determinants. In this study, the gyrA, gyrB, parC, and parE quinolone resistance determining regions (QRDR) were sequenced from quinolone resistant E. coli isolates. Also, the presence of plasmid-mediated quinolone resistance (PMQR) and the expression of efflux pump genes based on quantitative real-time PCR (qRT-PCR) were investigated. Of the 487 coliform bacteria, 9 strains showed nalidixic acid resistance, and 6 of the 9 nalidixic acid resistant isolates were also ciprofloxacin resistant. These 9 strains had a single mutation at codon 83 (S83L) in gyrA, 2 of them had double mutations at codon 83 and 87 (S83L and D87N) in gyrA and 3 of the 9 isolates had single mutations at codon 80 (S80I) in parC. None of the 9 isolates harbored PMQR determinants. Compared with wild-type E. coli ATCC 25922, an over-expression of the acrB gene (2.15-5.74 fold), encoding the pump component of the AcrAB-TolC efflux pump was observed in 4 of 6 ciprofloxacin resistant isolates. This study identified the quinolone resistance mechanism of E. coli isolated from raw milk samples in Gyeonggi-do.