DOI QR코드

DOI QR Code

AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism

  • Soojin Jang (Department of Discovery Biology, Antibacterial Resistance Laboratory, Institut Pasteur Korea)
  • Received : 2023.04.16
  • Accepted : 2023.05.30
  • Published : 2023.06.30

Abstract

Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors.

Keywords

Acknowledgement

This work was supported by the National Research foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020K1A4A7A02095129/2023M3A9G6057281 to S.J.).

References

  1. Antimicrobial Resistance C (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629-655 https://doi.org/10.1016/S0140-6736(21)02724-0
  2. Tacconelli E, Carrara E, Savoldi A et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18, 318-327 https://doi.org/10.1016/S1473-3099(17)30753-3
  3. Blair JM, Webber MA, Baylay AJ, Ogbolu DO and Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13, 42-51 https://doi.org/10.1038/nrmicro3380
  4. Arzanlou M, Chai WC and Venter H (2017) Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem 61, 49-59 https://doi.org/10.1042/EBC20160063
  5. Langevin AM, El Meouche I and Dunlop MJ (2020) Mapping the role of AcrAB-TolC efflux pumps in the evolution of antibiotic resistance reveals Near-MIC treatments facilitate resistance acquisition. mSphere 5, e01056-20
  6. Hernando-Amado S, Blanco P, Alcalde-Rico M et al (2016) Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resist Updat 28, 13-27 https://doi.org/10.1016/j.drup.2016.06.007
  7. Li XZ, Plesiat P and Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28, 337-418 https://doi.org/10.1128/CMR.00117-14
  8. Hassan KA, Liu Q, Henderson PJ and Paulsen IT (2015) Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio 6, e01982-14
  9. Alnaseri H, Arsic B, Schneider JE et al (2015) Inducible expression of a resistance-nodulation-division-type efflux pump in Staphylococcus aureus provides resistance to linoleic and arachidonic acids. J Bacteriol 197, 1893-1905 https://doi.org/10.1128/JB.02607-14
  10. Schindler BD, Frempong-Manso E, DeMarco CE et al (2015) Analyses of multidrug efflux pump-like proteins encoded on the Staphylococcus aureus chromosome. Antimicrob Agents Chemother 59, 747-748 https://doi.org/10.1128/AAC.04678-14
  11. Du D, Wang-Kan X, Neuberger A et al (2018) Multidrug efflux pumps: structure, function and regulation. Nat Rev Microbiol 16, 523-539 https://doi.org/10.1038/s41579-018-0048-6
  12. Nikaido H (2018) RND transporters in the living world. Res Microbiol 169, 363-371 https://doi.org/10.1016/j.resmic.2018.03.001
  13. Kobylka J, Kuth MS, Muller RT, Geertsma ER and Pos KM (2020) AcrB: a mean, keen, drug efflux machine. Ann N Y Acad Sci 1459, 38-68 https://doi.org/10.1111/nyas.14239
  14. Alav I, Kobylka J, Kuth MS et al (2021) Structure, assembly, and function of tripartite efflux and type 1 secretion systems in gram-negative bacteria. Chem Rev 121, 5479-5596 https://doi.org/10.1021/acs.chemrev.1c00055
  15. Puzari M and Chetia P (2017) RND efflux pump mediated antibiotic resistance in Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa: a major issue worldwide. World J Microbiol Biotechnol 33, 24
  16. Lorusso AB, Carrara JA, Barroso CDN, Tuon FF and Faoro H (2022) Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int J Mol Sci 23, 15779
  17. Wieczorek P, Sacha P, Hauschild T, Zorawski M, Krawczyk M and Tryniszewska E (2008) Multidrug resistant Acinetobacter baumannii--the role of AdeABC (RND family) efflux pump in resistance to antibiotics. Folia Histochem Cytobiol 46, 257-267 https://doi.org/10.2478/v10042-008-0056-x
  18. Su CC, Yin L, Kumar N et al (2017) Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Nat Commun 8, 171
  19. Bolla JR, Su CC, Do SV et al (2014) Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump. PLoS One 9, e97903
  20. Nikaido H and Zgurskaya HI (2001) AcrAB and related multidrug efflux pumps of Escherichia coli. J Mol Microbiol Biotechnol 3, 215-218
  21. Yamasaki S, Wang LY, Hirata T, Hayashi-Nishino M and Nishino K (2015) Multidrug efflux pumps contribute to Escherichia coli biofilm maintenance. Int J Antimicrob Agents 45, 439-441 https://doi.org/10.1016/j.ijantimicag.2014.12.005
  22. Bay DC, Stremick CA, Slipski CJ and Turner RJ (2017) Secondary multidrug efflux pump mutants alter Escherichia coli biofilm growth in the presence of cationic antimicrobial compounds. Res Microbiol 168, 208-221 https://doi.org/10.1016/j.resmic.2016.11.003
  23. Perez A, Poza M, Fernandez A et al (2012) Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrob Agents Chemother 56, 2084-2090 https://doi.org/10.1128/AAC.05509-11
  24. Webber MA, Bailey AM, Blair JM et al (2009) The global consequence of disruption of the AcrAB-TolC efflux pump in Salmonella enterica includes reduced expression of SPI-1 and other attributes required to infect the host. J Bacteriol 191, 4276-4285 https://doi.org/10.1128/JB.00363-09
  25. Langevin AM and Dunlop MJ (2018) Stress introduction rate alters the benefit of AcrAB-TolC efflux pumps. J Bacteriol 200, e00525-17
  26. Compagne N, Vieira Da Cruz A, Muller RT, Hartkoorn RC, Flipo M and Pos KM (2023) Update on the discovery of efflux pump inhibitors against critical priority gram-negative bacteria. Antibiotics (Basel) 12, 180
  27. Alenazy R (2022) Drug efflux pump inhibitors: a promising approach to counter multidrug resistance in gram-negative pathogens by targeting AcrB protein from AcrAB-TolC multidrug efflux pump from Escherichia coli. Biology (Basel) 11, 1328
  28. Du D, Wang Z, James NR et al (2014) Structure of the AcrAB-TolC multidrug efflux pump. Nature 509, 512-515 https://doi.org/10.1038/nature13205
  29. Daury L, Orange F, Taveau JC et al (2016) Tripartite assembly of RND multidrug efflux pumps. Nat Commun 7, 10731
  30. Chen M, Shi X, Yu Z et al (2022) In situ structure of the AcrAB-TolC efflux pump at subnanometer resolution. Structure 30, 107-113 e103
  31. Wang Z, Fan G, Hryc CF et al (2017) An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. Elife 6, 24905
  32. Su CC, Li M, Gu R et al (2006) Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway. J Bacteriol 188, 7290-7296 https://doi.org/10.1128/JB.00684-06
  33. Zwama M, Yamasaki S, Nakashima R, Sakurai K, Nishino K and Yamaguchi A (2018) Multiple entry pathways within the efflux transporter AcrB contribute to multidrug recognition. Nat Commun 9, 124
  34. Qiu W, Fu Z, Xu GG et al (2018) Structure and activity of lipid bilayer within a membrane-protein transporter. Proc Natl Acad Sci U S A 115, 12985-12990 https://doi.org/10.1073/pnas.1812526115
  35. Muller RT, Travers T, Cha HJ, Phillips JL, Gnanakaran S and Pos KM (2017) Switch loop flexibility affects substrate transport of the AcrB efflux pump. J Mol Biol 429, 3863-3874 https://doi.org/10.1016/j.jmb.2017.09.018
  36. Eicher T, Cha HJ, Seeger MA et al (2012) Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc Natl Acad Sci U S A 109, 5687-5692 https://doi.org/10.1073/pnas.1114944109
  37. Rajapaksha P, Pandeya A and Wei Y (2020) Probing the dynamics of AcrB through disulfide bond formation. ACS Omega 5, 21844-21852 https://doi.org/10.1021/acsomega.0c02921
  38. Koronakis V, Sharff A, Koronakis E, Luisi B and Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914-919 https://doi.org/10.1038/35016007
  39. Hobbs EC, Yin X, Paul BJ, Astarita JL and Storz G (2012) Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc Natl Acad Sci U S A 109, 16696-16701 https://doi.org/10.1073/pnas.1210093109
  40. Jeong H, Kim JS, Song S et al (2016) Pseudoatomic Structure of the tripartite multidrug efflux pump AcrAB-TolC reveals the intermeshing cogwheel-like interaction between AcrA and TolC. Structure 24, 272-276 https://doi.org/10.1016/j.str.2015.12.007
  41. Du D, Neuberger A, Orr MW et al (2020) Interactions of a bacterial RND transporter with a transmembrane small protein in a lipid environment. Structure 28, 625-634 e626
  42. Shi X, Chen M, Yu Z et al (2019) In situ structure and assembly of the multidrug efflux pump AcrAB-TolC. Nat Commun 10, 2635
  43. Koronakis V, Andersen C and Hughes C (2001) Channel-tunnels. Curr Opin Struct Biol 11, 403-407 https://doi.org/10.1016/S0959-440X(00)00224-4
  44. Koronakis V (2003) TolC--the bacterial exit duct for proteins and drugs. FEBS Lett 555, 66-71 https://doi.org/10.1016/S0014-5793(03)01125-6
  45. Zgurskaya HI, Krishnamoorthy G, Ntreh A and Lu S (2011) Mechanism and function of the outer membrane channel TolC in multidrug resistance and physiology of Enterobacteria. Front Microbiol 2, 189
  46. Mikolosko J, Bobyk K, Zgurskaya HI and Ghosh P (2006) Conformational flexibility in the multidrug efflux system protein AcrA. Structure 14, 577-587 https://doi.org/10.1016/j.str.2005.11.015
  47. Neuberger A, Du D and Luisi BF (2018) Structure and mechanism of bacterial tripartite efflux pumps. Res Microbiol 169, 401-413 https://doi.org/10.1016/j.resmic.2018.05.003
  48. Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K and Pos KM (2006) Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295-1298 https://doi.org/10.1126/science.1131542
  49. Murakami S, Nakashima R, Yamashita E, Matsumoto T and Yamaguchi A (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443, 173-179 https://doi.org/10.1038/nature05076
  50. Seeger MA, Diederichs K, Eicher T et al (2008) The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance. Curr Drug Targets 9, 729-749 https://doi.org/10.2174/138945008785747789
  51. Murakami S, Nakashima R, Yamashita E and Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587-593 https://doi.org/10.1038/nature01050
  52. Fischer N and Kandt C (2013) Porter domain opening and closing motions in the multi-drug efflux transporter AcrB. Biochim Biophys Acta 1828, 632-641 https://doi.org/10.1016/j.bbamem.2012.10.016
  53. Eicher T, Seeger MA, Anselmi C et al (2014) Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. Elife 3, e03145
  54. Yue Z, Chen W, Zgurskaya HI and Shen J (2017) Constant pH molecular dynamics reveals how proton release drives the conformational transition of a transmembrane efflux pump. J Chem Theory Comput 13, 6405-6414 https://doi.org/10.1021/acs.jctc.7b00874
  55. Webber A, Ratnaweera M, Harris A, Luisi BF and Ntsogo Enguene VY (2022) A model for allosteric communication in drug transport by the AcrAB-TolC tripartite efflux pump. Antibiotics (Basel) 11, 52
  56. Sennhauser G, Amstutz P, Briand C, Storchenegger O and Grutter MG (2007) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 5, e7
  57. Nakashima R, Sakurai K, Yamasaki S, Nishino K and Yamaguchi A (2011) Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 480, 565-569 https://doi.org/10.1038/nature10641
  58. Husain F and Nikaido H (2010) Substrate path in the AcrB multidrug efflux pump of Escherichia coli. Mol Microbiol 78, 320-330 https://doi.org/10.1111/j.1365-2958.2010.07330.x
  59. Husain F, Bikhchandani M and Nikaido H (2011) Vestibules are part of the substrate path in the multidrug efflux transporter AcrB of Escherichia coli. J Bacteriol 193, 5847-5849 https://doi.org/10.1128/JB.05759-11
  60. Tam HK, Malviya VN, Foong WE et al (2020) Binding and transport of carboxylated drugs by the multidrug transporter AcrB. J Mol Biol 432, 861-877 https://doi.org/10.1016/j.jmb.2019.12.025
  61. Oswald C, Tam HK and Pos KM (2016) Transport of lipophilic carboxylates is mediated by transmembrane helix 2 in multidrug transporter AcrB. Nat Commun 7, 13819
  62. Tam HK, Foong WE, Oswald C, Herrmann A, Zeng H and Pos KM (2021) Allosteric drug transport mechanism of multidrug transporter AcrB. Nat Commun 12, 3889
  63. Kobayashi N, Tamura N, van Veen HW, Yamaguchi A and Murakami S (2014) Beta-Lactam selectivity of multidrug transporters AcrB and AcrD resides in the proximal binding pocket. J Biol Chem 289, 10680-10690 https://doi.org/10.1074/jbc.M114.547794
  64. Schuster S, Kohler S, Buck A et al (2014) Random mutagenesis of the multidrug transporter AcrB from Escherichia coli for identification of putative target residues of efflux pump inhibitors. Antimicrob Agents Chemother 58, 6870-6878 https://doi.org/10.1128/AAC.03775-14
  65. Sjuts H, Vargiu AV, Kwasny SM et al (2016) Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc Natl Acad Sci U S A 113, 3509-3514 https://doi.org/10.1073/pnas.1602472113
  66. Nikaido H, Basina M, Nguyen V and Rosenberg EY (1998) Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those beta-lactam antibiotics containing lipophilic side chains. J Bacteriol 180, 4686-4692 https://doi.org/10.1128/JB.180.17.4686-4692.1998
  67. Ornik-Cha A, Wilhelm J, Kobylka J et al (2021) Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms. Nat Commun 12, 6919
  68. Vargiu AV and Nikaido H (2012) Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc Natl Acad Sci U S A 109, 20637-20642 https://doi.org/10.1073/pnas.1218348109
  69. Kinana AD, Vargiu AV and Nikaido H (2013) Some ligands enhance the efflux of other ligands by the Escherichia coli multidrug pump AcrB. Biochemistry 52, 8342-8351 https://doi.org/10.1021/bi401303v
  70. Davis K, Greenstein T, Viau Colindres R and Aldridge BB (2021) Leveraging laboratory and clinical studies to design effective antibiotic combination therapy. Curr Opin Microbiol 64, 68-75 https://doi.org/10.1016/j.mib.2021.09.006
  71. Blair JM, Smith HE, Ricci V, Lawler AJ, Thompson LJ and Piddock LJ (2015) Expression of homologous RND efflux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design. J Antimicrob Chemother 70, 424-431 https://doi.org/10.1093/jac/dku380
  72. Piddock LJ (2006) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19, 382-402 https://doi.org/10.1128/CMR.19.2.382-402.2006
  73. Blair JM, Bavro VN, Ricci V et al (2015) AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc Natl Acad Sci U S A 112, 3511-3516 https://doi.org/10.1073/pnas.1419939112
  74. Yang L, Shi H, Zhang L et al (2023) Emergence of two AcrB substitutions conferring multidrug resistance to Salmonella spp. Antimicrob Agents Chemother 65, e01589-20
  75. Opperman TJ and Nguyen ST (2015) Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 6, 421
  76. Renau TE, Leger R, Flamme EM et al (1999) Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J Med Chem 42, 4928-4931 https://doi.org/10.1021/jm9904598
  77. Nakashima R, Sakurai K, Yamasaki S et al (2013) Structural basis for the inhibition of bacterial multidrug exporters. Nature 500, 102-106 https://doi.org/10.1038/nature12300
  78. Bohnert JA and Kern WV (2005) Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob Agents Chemother 49, 849-852 https://doi.org/10.1128/AAC.49.2.849-852.2005
  79. Wang Y, Alenazy R, Gu X et al (2021) Design and structural optimization of novel 2H-benzo[h]chromene derivatives that target AcrB and reverse bacterial multidrug resistance. Eur J Med Chem 213, 113049
  80. Opperman TJ, Kwasny SM, Kim HS et al (2014) Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob Agents Chemother 58, 722-733 https://doi.org/10.1128/AAC.01866-13
  81. Ple C, Tam HK, Vieira Da Cruz A et al (2022) Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps. Nat Commun 13, 115
  82. Jesin JA, Stone TA, Mitchell CJ, Reading E and Deber CM (2020) Peptide-based approach to inhibition of the multidrug resistance efflux pump AcrB. Biochemistry 59, 3973-3981 https://doi.org/10.1021/acs.biochem.0c00417
  83. Abdali N, Parks JM, Haynes KM et al (2017) Reviving antibiotics: efflux pump inhibitors that interact with AcrA, a membrane fusion protein of the AcrAB-TolC multidrug efflux pump. ACS Infect Dis 3, 89-98 https://doi.org/10.1021/acsinfecdis.6b00167
  84. Darzynkiewicz ZM, Green AT, Abdali N et al (2019) Identification of binding sites for efflux pump inhibitors of the AcrAB-TolC Component AcrA. Biophys J 116, 648-658 https://doi.org/10.1016/j.bpj.2019.01.010
  85. Grimsey EM, Fais C, Marshall RL et al (2020) Chlorpromazine and amitriptyline are substrates and inhibitors of the AcrB multidrug efflux pump. mBio 11, e00465-20
  86. Sobhy MK, Mowafy S, Lasheen DS, Farag NA and Abouzid KAM (2019) 3D-QSAR pharmacophore modelling, virtual screening and docking studies for lead discovery of a novel scaffold for VEGFR 2 inhibitors: design, synthesis and biological evaluation. Bioorg Chem 89, 102988
  87. Phan TV, Nguyen VT, Nguyen CH et al (2023) Discovery of AcrAB-TolC pump inhibitors: virtual screening and molecular dynamics simulation approach. J Biomol Struct Dyn, 1-18
  88. Abdel-Halim H, Al Dajani A, Abdelhalim A and Abdelmalek S (2019) The search of potential inhibitors of the AcrAB-TolC system of multidrug-resistant Escherichia coli: an in silico approach. Appl Microbiol Biotechnol 103, 6309-6318 https://doi.org/10.1007/s00253-019-09954-1
  89. Lomovskaya O and Bostian KA (2006) Practical applications and feasibility of efflux pump inhibitors in the clinica vision for applied use. Biochem Pharmacol 71, 910-918 https://doi.org/10.1016/j.bcp.2005.12.008
  90. Bolla JM, Alibert-Franco S, Handzlik J et al (2011) Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS Lett 585, 1682-1690 https://doi.org/10.1016/j.febslet.2011.04.054
  91. Crass RL and Pai MP (2019) Pharmacokinetics and Pharmacodynamics of beta-Lactamase Inhibitors. Pharmacotherapy 39, 182-195 https://doi.org/10.1002/phar.2210
  92. Reading E, Ahdash Z, Fais C et al (2020) Perturbed structural dynamics underlie inhibition and altered efflux of the multidrug resistance pump AcrB. Nat Commun 11, 5565
  93. Pettersen EF, Goddard TD, Huang CC et al (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 30, 70-82 https://doi.org/10.1002/pro.3943
  94. Goddard TD, Huang CC, Meng EC et al (2018) UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25 https://doi.org/10.1002/pro.3235
  95. Nikaido H and Pages JM (2012) Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 36, 340-363 https://doi.org/10.1111/j.1574-6976.2011.00290.x
  96. Wang-Kan X, Blair JMA, Chirullo B et al (2017) Lack of AcrB efflux function confers loss of virulence on Salmonella enterica Serovar Typhimurium. mBio 8, e00968-17
  97. Atzori A, Malviya VN, Malloci G et al (2019) Identification and characterization of carbapenem binding sites within the RND-transporter AcrB. Biochim Biophys Acta Biomembr 1861, 62-74  https://doi.org/10.1016/j.bbamem.2018.10.012