• Title/Summary/Keyword: Acoustic study

Search Result 3,596, Processing Time 0.036 seconds

The Influence of the Regional Weather in Geriatric Trauma (지역기상이 노인외상에 미치는 영향)

  • Kim, Jung Ho;Do, Byung Soo;Lee, Sam Beom;Lee, Sung Hoon;Si, Jong Won;Lee, Jae Young;Kim, Oh Lyong
    • Journal of Trauma and Injury
    • /
    • v.19 no.2
    • /
    • pp.97-104
    • /
    • 2006
  • Purpose: Many factors influence the occurrence and severity of geriatric trauma, and regional weather is regarded as one factor that influences geriatric trauma. In this study, to predict the type, severity, and incidence of geriatric trauma patient, we analyzed the influence of regional weather on geriatric trauma. Methods: The subjects of our investigation were trauma patients over sixty-five years of age who visited the Emergency Department (ED) of Yeungnam University Hospital during a one-year period. We retrospectively reviewed the medical charts of 436 geriatric trauma patients, and the data were analyzed by using SPSS 12.0 for Window. The weather was based on data from the Korea Meteorological Administration. Results: The average age was 72.8 years old, and the ratio of males to females was 1:1.1. The mean spell out ISS was 10.8, and no difference was found between males and females. Slips were the most common cause of trauma. The largest numbers of aged trauma patients, 46, visited the ED in May, and the smallest number of such patients, 24, visited the ED in December. In addition to, summer saw the largest number of aged trauma patients. The type of trauma, the Injury Severity Score, and the number of patients had no relationship with season. On sunny days, the ISS was larger in patients who had hypotension and who had tachycardia. On rainy day, the ISS was larger in male patients and cultivator accident patients. The number of patients was larger on partly cloudy days. Conclusion: In spring and summer and on partly cloudy days, we must be prepared to treat aged traumatized patients in the E.D. On rainy days, visual sensation, tactual sense, and acoustic sense must be closely examined. In addition,on rainy day, aged male traumatized patients or cultivator accident patients must to be closely observation.

A Study on Performance Evaluation of Hidden Markov Network Speech Recognition System (Hidden Markov Network 음성인식 시스템의 성능평가에 관한 연구)

  • 오세진;김광동;노덕규;위석오;송민규;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.30-39
    • /
    • 2003
  • In this paper, we carried out the performance evaluation of HM-Net(Hidden Markov Network) speech recognition system for Korean speech databases. We adopted to construct acoustic models using the HM-Nets modified by HMMs(Hidden Markov Models), which are widely used as the statistical modeling methods. HM-Nets are carried out the state splitting for contextual and temporal domain by PDT-SSS(Phonetic Decision Tree-based Successive State Splitting) algorithm, which is modified the original SSS algorithm. Especially it adopted the phonetic decision tree to effectively express the context information not appear in training speech data on contextual domain state splitting. In case of temporal domain state splitting, to effectively represent information of each phoneme maintenance in the state splitting is carried out, and then the optimal model network of triphone types are constructed by in the parameter. Speech recognition was performed using the one-pass Viterbi beam search algorithm with phone-pair/word-pair grammar for phoneme/word recognition, respectively and using the multi-pass search algorithm with n-gram language models for sentence recognition. The tree-structured lexicon was used in order to decrease the number of nodes by sharing the same prefixes among words. In this paper, the performance evaluation of HM-Net speech recognition system is carried out for various recognition conditions. Through the experiments, we verified that it has very superior recognition performance compared with the previous introduced recognition system.

  • PDF

A Study on the Current Measurement Using birefringence Fiber (복굴절 광섬유를 이용한 전류측정에 관한 연구)

  • Jang Nam-Young;Choi Pyung-Suk;Eun Jae-Jeong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.2
    • /
    • pp.59-66
    • /
    • 2005
  • Accuracy of current measurement in fiber optic current sensor(FOCS), especially, unidirectional polarimetric fiber optic current sensor(PFOCS) is affected by the environment perturbations such as acoustic vibrations changes to the sensing fiber, and intrinsic perturbations such as the bending fiber that the sensing fiber wound around a current carrying wire. The perturbations affect the birefringence properties of sensing fiber in sensor head and cause false current readings. Thus, using compensation technique, reciprocal PFOCS, for unidirectional PFOCS the perturbations are suppressed. In this paper, we carried out the numerical analysis of performance in reciprocal PFOCS including the degree of polarization error, and false current of environmental and intrinsic perturbations on the sensing fiber. Also, we compared the effect of mirror with the faraday rotation mirror(FRM) in reciprocal PFOCS configuration. And the different optical source's wavelengths, 633nm and 1300nm is used. In the results, at 633nm, using mirror and FRM, the degree of polarization error is calculated to $2.3\%$ and $0.0196\%$, respectively. At $1300{\cal}nm$ using mirror and FRM the degree of polarization error is calculated to $9.97\%$ and $0.0196\%$, respectively. Also, compared with false current, the results is calculated to $9.82{\times}10^{-9}A$ and $1.4{\times}10^{-17}A$, respectively, and show that the reciprocal PFOCS is more robust configuration than unidiretionnal PFOCS for environmental and intrinsic perturbations.

  • PDF

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method (EEMD법을 이용한 저속 선회베어링 상태감시)

  • Caesarendra, W.;Park, J.H.;Kosasih, P.B.;Choi, B.K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-143
    • /
    • 2013
  • Vibration condition monitoring of low-speed rotational slewing bearings is essential ever since it became necessary for a proper maintenance schedule that replaces the slewing bearings installed in massive machinery in the steel industry, among other applications. So far, acoustic emission(AE) is still the primary technique used for dealing with low-speed bearing cases. Few studies employed vibration analysis because the signal generated as a result of the impact between the rolling element and the natural defect spots at low rotational speeds is generally weak and sometimes buried in noise and other interference frequencies. In order to increase the impact energy, some researchers generate artificial defects with a predetermined length, width, and depth of crack on the inner or outer race surfaces. Consequently, the fault frequency of a particular fault is easy to identify. This paper presents the applications of empirical mode decomposition(EMD) and ensemble empirical mode decomposition(EEMD) for measuring vibration signals slewing bearings running at a low rotational speed of 15 rpm. The natural vibration damage data used in this paper are obtained from a Korean industrial company. In this study, EEMD is used to support and clarify the results of the fast Fourier transform(FFT) in identifying bearing fault frequencies.

Control Measures for Air Pollutant Emissions from In-Use Light-Duty Diesel Vehicles Regarding their Emission Control Technologies (배출허용기준 대응기술을 고려한 국내 소형 경유 운행차의 대기오염물질 관리 방안)

  • Lee, Taewoo;Park, Hana;Park, Junhong;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.327-338
    • /
    • 2014
  • The objective of this study is to enhance the effectiveness of Korean Inspection and Maintenance (I/M) program. Three main tasks are: to measure pollutant emissions of in-use light-duty diesel vehicles (LDVs); to evaluate the validity of existing smoke control scheme for low-smoke-emitting vehicles, which have diesel particulate filters, DPF, to meet stringent Euro-5 emission limits; and to assess the necessity and the benefit of $NO_x$ inspection, which is not involved in current I/M program. We measured second-by-second smoke, particulate and gaseous emissions of 27 LDVs using opacity smoke meter, photo-acoustic soot sensor, and portable emissions measurement system, respectively, under the Korean I/M test driving cycle, KD-147. We find that the DPF plays a key role in controlling soot, which can be considered as black carbon contained in particulate matter. Thus, from an I/M perspective, we believe smoke inspection strategies for Euro-5 diesel vehicles should be more focused on the capability of detecting DPF malfunctions or failures, in order to keep DPF properly functional. Fleet averaged distance-specific $NO_x$ emissions are consistently higher than corresponding emission limits, and the values are similar among pre-Euro-3, Euro-3, and Euro-4 vehicle fleets. These findings indicate that the $NO_x$ inspection should be incorporated into current I/M program in order to manage urban $NO_x$ emissions. This research allows the Korean I/M program keep pace with developments in vehicle technologies, as well as the increased emphasis on $NO_x$ with respect to air quality and human health.

Inverse Estimation of Geoacoustic Parameters in Shallow Water Using tight Bulb Sound Source (천해환경에서 전구음원을 이용한 지음향인자의 역추정)

  • 한주영;이성욱;나정열;김성일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2004
  • An inversion method is presented for the determination of the compressional wave speed, compressional wave attenuation, thickness of the sediment layer and density as a function of depth for a horizontally stratified ocean bottom. An experiment for estimating those properties was conducted in the shallow water of South Sea in Korea. In the experiment, a light bulb implosion and the propagating sound were measured using a VLA (vertical line array). As a method for estimating the geoacoustic properties, a coherent broadband matched field processing combined with Genetic Algorithm was employed. When a time-dependent signal is very short, the Fourier transform results are not accurate, since the frequency components are not locatable in time and the windowed Fourier transform is limited by the length of the window. However, it is possible to do this using the wavelet transform a transform that yields a time-frequency representation of a signal. In this study, this transform is used to identify and extract the acoustic components from multipath time series. The inversion is formulated as an optimization problem which maximizes the cost function defined as a normalized correlation between the measured and modeled signals in the wavelet transform coefficient vector. The experiments and procedures for deploying the light bulbs and the coherent broadband inversion method are described, and the estimated geoacoustic profile in the vicinity of the VLA site is presented.

Investigation of the sound insulation performance of walls and flanking noises in classrooms using field measurements (현장실험을 통한 학교교실의 벽체 차음성능 및 측로전달소음 조사)

  • Ryu, Da-Jung;Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.329-337
    • /
    • 2017
  • In USA and UK, the standards of both reverberation time and background noise level have been established for the appropriate aural environment in classrooms. In order to realize this, guidelines for architectural planning and interior finishing have been also suggested. However, in Korea, there has hardly been any guidelines for satisfying background noise criteria and investigation about sound insulation performance of current walls of classrooms. The present study investigates the structure of outer wall and walls between classrooms of two middle schools in order to analyze the sound insulation performance against both exterior and interior noises. Acoustic parameters including transmission loss, standardized sound level difference, and signal to noise ratio have been measured and analyzed for sound insulation performance of walls and flanking noises. As a result, concerning the walls in between classrooms, it was found that walls of dry construction have greater sound insulation performance rather than the walls of wet construction especially in mid and high frequency bands. Also, It was revealed that thermopane, insulated pair glass, of outer walls, has greater sound insulation performance than the double window consisted of two single pane glass. Regarding flanking noises, the standards were exceeded when all windows, or windows and doors front onto corridor were opened. It denotes that students could be disturbed with the sound transmission by the interior noises.

Evaluation of Mechanical and Interfacial Properties between Glass Fiber and Epoxy Resin after NaCl Solution and Aging Treatments (염수 노화처리 일수에 따른 유리섬유 에폭시간의 기계적 및 계면 물성 변화 평가)

  • Shin, Pyeong-Su;Wang, Zuo-Jia;Kwon, Dong-Jun;Choi, Jin-Yeong;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.22-27
    • /
    • 2015
  • Although it is important to have high strength of each of fiber and matrix, interface between fiber and matrix is most important. If NaCl water penetrates the interface, that area will be weak. So experiment about increasing interfacial strength is in process. In this study, the change of properties by mechanical, interfacial and micromechanical tests was observed after NaCl and aging treatment. The changes in mechanical properties of glass fiber were investigated using single-fiber tensile test. Interfacial properties between glass fiber and epoxy resin were evaluated using nondestructive acoustic emission (AE) and micromechanical test applied to fatigue test. Through change of fatigue properties, relative interfacial properties were evaluate. In conclusion, glass fiber diameter decreased and the reduction of mechanical and interfacial was observed with NaCl solution and aging treatment.

High Resolution for Shallow Seismic Reflection (Applied to the Underground Cavity) (천부층 지진파 반사에 대한 해상도 (지하 공동에 응용))

  • 김소구
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.167-176
    • /
    • 1993
  • The high resolution studies for shallow seismic reflection are carried out using 24-channel seismograph and the high sensitivity geophone(50-500Hz). In order to study the underground structures such as small faults, fractures, cracks and cavities, it is of great importance to enhance high resolution of the seisrnic records for the targets vertically and laterally. In analysis of high resolution seismic reflection, Nyquist frequency($F_N$) should be lager than the highest frequency in the records and the highest wave number should not be exceed the Nyquist wave number($1/2{\Delta}x$). The highest frequency above the Nyquist will be removed using low pass filter or antialias filter. The trace interval Ax should be taken into account so that the highest wave number(f/v) can be less than $1/2{\Delta}x$. The Fraunhofer diffraction of a hyperbola seismic section above the tunnel appeares on the common offset method, and little first arrivals of direct wave on the single-end shooting, delayed strong impulsive reflections are also shown above the tunnel. Ray Method(Cherveney and Psencik, 1983) also represents the same results that the reflected waves from the tunnel are delayed and single impulsive with little first arrivals, while transrnitted waves through the tunnel are delayed with low frequency.

  • PDF

The Effect of Auditory Condition on Voice Parameter of Orofacial Pain Patient (청각 환경이 구강안면 통증환자의 음성 파라미터에 미치는 영향)

  • Lee, Ju-Young;Baek, Kwang-Hyun;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.4
    • /
    • pp.427-432
    • /
    • 2005
  • This study have been compared and analyzed voice parameter under the condition of normal voice and auditory condition(noise and music) for 29 patients of orofacial pain and 31 normal people to investigate voice feature and vocal variation for auditory condition of orofacial pain patient. 1. Compared to normal voice, orofacial pain patient showed lower and unstable voice feature which has low F0 rate and high jitter and shimmer rate. 2. Voice of orofacial pain patient showed more relaxed and stable voice feature with low F0 and shimmer rate in the music condition than noise condition. 3. Normal people's voice has no significant difference between music and noise condition even though it has high F0 rate under the noise condition. As a result, orofacial pain patient showed difference of feature and different response for external auditory condition compared to normal voice. Providing of positive emotional environment such as music could be considered for better outcome of oral facial pain patient's functional disability.