• Title/Summary/Keyword: Acoustic response

Search Result 574, Processing Time 0.032 seconds

Pseudo Stereophonic Acoustic Echo Canceller using Hyper-plane Projection Algorithm (Hyper-plane투영 알고리듬을 이용한 의사 스테레오 음향 반향 제거기)

  • 박필구;이원철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.17-30
    • /
    • 1999
  • This paper proposes a new stereophonic acoustic echo canceller to prevent impairments on the voice quality and to remove acoustic echo effectively appearing in stereo environment at the instant of abrupt change of the transmission room environment in teleconferencing system. In stereophonic acoustic echo canceller, the major defective problems are the large computational complexity of estimating echo path systems due to the long impulse response of the true echo paths and the performance degradation of echo canceller due to large correlation between dual stereo signals. Moreover, the change of the suboptimal solution for the echo canceller was considered as a critical deficient factor on to the performance of stereophonic echo canceller. To overcome these problems, this paper proposes pseudo stereophonic acoustic echo canceller using Hyper-plane projection algorithm, which shows the robustness to the environment change of the transmission room and the efficiency of computational complexity.

  • PDF

Application of Technique Discrete Wavelet Transform for Acoustic Emission Signals (음향방출신호에 대한 이산웨이블릿 변환기법의 적용)

  • 박재준;김면수;김민수;김진승;백관현;송영철;김성홍;권동진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.585-591
    • /
    • 2000
  • The wavelet transform is the most recent technique for processing signals with time-varying spectra. In this paper, the wavelet transform is utilized to improved the assessment and multi-resolution analysis of acoustic emission signals generating in partial discharge. This paper especially deals with the assessment of process statistical parameter using the features extracted from the wavelet coefficients of measured acoustic emission signals in case of applied voltage 20[kv]. Since the parameter assessment using all wavelet coefficients will often turn out leads to inefficient or inaccurate results, we selected that level-3 stage of multi decomposition in discrete wavelet transform. We applied FIR(Finite Impulse Response)digital filter algorithm in discrete to suppression for random noise. The white noise be included high frequency component denoised as decomposition of discrete wavelet transform level-3. We make use of the feature extraction parameter namely, maximum value of acoustic emission signal, average value, dispersion, skewness, kurtosis, etc. The effectiveness of this new method has been verified on ability a diagnosis transformer go through feature extraction in stage of acting(the early period, the last period) .

  • PDF

Acoustic Characteristics of the Haegeum Body (해금 몸체의 음향학적 특성에 관한 연구)

  • Noh, Jung-Uk;Park, Sang-Ha;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.317-322
    • /
    • 2007
  • This paper is the first step to study on the acoustic characteristics of the Haegeum, a Korean traditional bowed-string instrument. We measured acoustic transfer functions of a Haegeum body using impulse response method. All the measurements are performed in anechoic chamber, INMC, SNU. We examined resonant characteristics of the Haegeum body with obtained transfer functions. Then we performed additional studies which are the Chladni pattern experiments and calculations of air cavity resonances to verify relations between the resonant peaks on the transfer functions and the resonances of each component, such as top plate, air cavity and so on. As a result, we can explain the acoustic characteristics of a Haegeum body and its components.

Feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity

  • Bagha, Ashok K.;Modak, Subodh V.
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.273-283
    • /
    • 2017
  • This paper presents and compares three feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity. These are a) control strategy based on direct output feedback (DOFB) b) control strategy based on linear quadratic regulator (LQR) to reduce structural vibrations and c) LQR control strategy with a weighting scheme based on structural-acoustic coupling coefficients. The first two strategies are indirect control strategies in which noise reduction is achieved through active vibration control (AVC), termed as AVC-DOFB and AVC-LQR respectively. The third direct strategy is based on active structural-acoustic control (ASAC). This strategy is an LQR based optimal control strategy in which the coupling between the various structural and the acoustic modes is used to design the controller. The strategy is termed as ASAC-LQR. A numerical model of a 3-D rectangular box cavity with a flexible plate (glued with piezoelectric patches) and with other five surfaces treated rigid is developed using finite element (FE) method. A single pair of collocated piezoelectric patches is used for sensing the vibrations and applying control forces on the structure. A comparison of frequency response function (FRF) of structural nodal acceleration, acoustic nodal pressure, and piezoelectric actuation voltage is carried out. It is found that the AVC-DOFB control strategy gives equal importance to all the modes. The AVC-LQR control strategy tries to consume the control effort to damp all the structural modes. It is seen that the ASAC-LQR control strategy utilizes the control effort more intelligently by adding higher damping to those structural modes that matter more for reducing the interior noise.

Custom-Made ITE Type Hearing Protection Device Using a Small Acoustic Filter

  • Lee, Yun-Jung;Kim, Pil-Un;Jung, Young-Jin;Chang, Yong-Min;Cho, Jin-Ho;Kim, Myoung-Nam
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.376-383
    • /
    • 2006
  • Noise induced hearing loss (NIHS), the well-known occupational disease, is caused by continuous excessive noise. The prevention of NIHS is very important, because it is unrecoverable. There are some kinds of hearing protection device (HPD), and those are effective in preventing NIHS. But workers in noisy environment often resist to wearing them. Because they are ready - made products, so workers feel uncomfortable to wear. Also, they didn't maintain the conversation frequency range, so workers are hard to communicate in wearing them. To prevent hearing loss effectively, it is important that workers keep wearing HPD. Therefore, a HPD is needed to be comfortable to wear and be effective not only in hearing protection but also in preserving communication ability. So we proposed a custom - made hearing protection device in which a small acoustic filter is inserted. We designed several kinds of small acoustic filters and carried out some acoustic experiments for measuring characteristics of filters. We confirmed that acoustic transmission characteristic can be adjusted from experimental results using designed small acoustic filters. And we researched for the actual efficiency of a new developed custom - made hearing protection device using a small size acoustic filter. Also, we found out that workers are more satisfied with the new development than a former protection device from a workers' response.

Acoustic Characteristics of Watermelon According to Impact Conditions (타격조건에 따른 수박의 음파특성)

  • 최동수;최규홍;이영희;이강진;김만수
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.67-76
    • /
    • 2002
  • This study was conducted to investigate the effects of impact conditions on the acoustic characteristics of a watermelon. The study was crucial to develop a device for nondestructive internal quality evaluation of a watermelon by an acoustic impulse response method. An impact device was constructed with a pendulum to hit the watermelon, a microphone to detect the acoustic impulse responses, and a digital oscilloscope and computer to store and analyze the data. The selected samples were Guemcheon cultivar watermelons(Citrulus Vulgaris Schrad) harvested on Oct. 20,1998. Sixty watermelons were tested on flour different types of sample holders, with four kinds of ball made of different materials, at four bevels of the angular position of the pendulum and distance from the watermelon to the microphone. Since the magnitudes of frequencies obtained by hitting with the steel and rubber ball were relatively small at the bandwidths of above 500 Hz, it was shown that the steel and rubber ball were not suitable far a hitting ball in the pendulum to get informations on internal quality of the watermelon. In case of using broth of the wood and acryl ball, almost the same and good acoustic responses were shown on the wide range of frequency bandwidth. Therefore, it seemed that the acryl ball was more suitable to the test than the wood ball in considering its mechanical properties. The acoustic characteristics of the watermelon were not shown a significant difference between the types of sample holder. The amplitudes of the acoustic signals and the magnitudes of frequencies from the whole samples increased with increase of the angular position of pendulum and with decrease of the distance from the watermelon to the microphone. However, the resonance resonance of the sample were almost the same regardless of the angular positions and the distances.

Prediction of Heavy-Weight Floor Impact Sound in Multi-unit House using Finite Element Analysis (유한요소해석을 이용한 공동주택의 중량충격음 예측)

  • Mun, Dae-Ho;Lee, Sang-Hyun;Hwang, Jae-Seung;Baek, Gil-Ok;Park, Hong-Gun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.645-657
    • /
    • 2015
  • In this study floor impact noise and structure acceleration response of bare concrete slabs were predicted by using Finite Element Analysis(FEA). Prediction results were compared with experimental results to prove the accuracy of numerical model. Acoustic absorption were addressed by using panel impedance coefficients with frequency characteristics and structural modal damping of numerical model were applied by modal testing results and analysis of prediction and test results. By using frequency response function, the floor acceleration and acoustic pressure responses for various impact sources were calculated at the same time. In the FEA, the natural frequencies and the shapes of vibration and acoustic modes can be estimated through the eigen-value analysis, and it can be visually seen the vibration and sound pressure field and the contribution of major modes.

Design of Capacitive Displacement Sensor and Gap Measurement with High Precision Using Surface Acoustic Wave Device (표면 탄성파 장치를 응용한 용량 성 변위센서의 설계 및 초정밀 간극 측정)

  • Kim, Jae-Geun;Lee, Taek-Joo;Lim, Soo-Cheol;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Su
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.437-443
    • /
    • 2010
  • SAW device is widely used as band pass filters, chemical or physical sensors, and actuators. In this paper, we propose the capacitive gap measurement system with high precision using SAW device. The research process is mainly composed of theoretical and experimental part. In the theoretical part, equivalent circuit model was used to predict the SAW response by the change of load impedance. In the experimental part, commercialized capacitor was used to see the SAW response by the change of load capacitance to check the feasibility as a sensor unit. After that, experimental setup to measure and adjust the gap was made and the SAW response by the change of gap which caused the capacitance change was measured. Finally, resolution and stroke was decided compared with the signal change and basic measurement noise level.

Fabrication of AIN-based FBAR Devices by Using a Novel Process and Characterization of Their Frequency Response Characteristics in terms of Various Electrode Metals (새로운 공정을 이용한 AIN 체적 탄성파 소자의 제작 및 다양한 금속 전극막에 따른 주파수 응답 특성 분석)

  • Kim, Bo-Hyun;Park, Chang-Kyun;Park, Jin-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.915-920
    • /
    • 2007
  • AIN-based film bulk acoustic resonator (FBAR) devices which adopt a membrane-type configuration such as Mo/AIN/bottom-metal/Si are fabricated by employing a novel process. The proposed resonator structure does not require any supporting layer above the substrate, which leads to the reduction in energy loss of the resonators. For all the FBAR devices, the frequency response characteristics are measured and the device parameters, such as return loss and input impedance, are extracted from the frequency responses, and analyzed in terms of the various metals such as Al. Cu, Mo, W used in the bottom-electrode. The mass-loading effect caused by the used bottom-electrode metals is found to be the main reason for the difference revealed in the measured characteristics of the fabricated FBAH devices. The results obtained in this study also show that the degree of match in lattice constant and thermal expansion coefficient hetween piezoelectric layers and electrode metals is crucial to determine the device performance of FEAR.

Characteristics of Acoustic Impulse Response of Submerged Cylindrical Objects as Elements of Target-Scattered Echo (표적신호 시뮬레이션 요소로서 원통형 몰수체의 충격응답의 특성)

  • Kim, Jae-Soo;Seong, Nak-Jin;Lee, Sang-Young;Kim, Kang;Yu, Myong-Jong;Cho, Woon-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.5-13
    • /
    • 1994
  • Simulation of the target-scattered echo requires the understanding of scattering mechanism at the highlight points. In this paper, the basic assumption of Highlight Model is reviewed through the analyzed data obtained in the acoustic water tank experiment. The analysis shows that the scattering mechanism involves pulse elongation and frequency shift as elements of target-scattered echo, and that the internal structures affect the temporal response of the target-scattered echo significantly. The band-limited impulse response or Green's function due to the diffraction from highlight points of internal structures is not mere delta function, but acts like a filter, which causes frequency shift and is elongated in time.

  • PDF