• Title/Summary/Keyword: Acoustic power level

Search Result 144, Processing Time 0.022 seconds

An Experimental Study on the Noise Reduction of Cooling Fans for Four-ton Forklift Machines (4톤급 지게차 냉각홴 소음 저감에 관한 실험적 연구)

  • Choi, Daesik;Kim, Seokwoo;Yeom, Taeyoung;Lee, Seungbae
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This paper presents research on methods for the reduction of forklifts' noise level for the increased comfort and safety of its operator. A cooling fan with a high air volume flow rate installed in the forklift acts as an important design parameter which efficiently cools the heat exchanger system, helping to transfer internal heat from the engine room to the outdoors with both transmitted and diffracted opening noises. The cooling fan contributes significantly to both the forklift's emitted sound power and the operator room's noise level, thereby necessitating research on the forklift's reduction of acoustic power level and transmission. A noise analysis for various fan models with a biomimetic design based on eagle-wing geometry was conducted. In addition to the acoustic power generation, the aerodynamic performance of the cooling blade is also strongly influenced by the design of airfoil distribution, thereby requiring optimization. The cooling fans were fabricated and installed in the forklift in order to check the efficacy of the forklift engine's cooling, and the final version of the fan was measured for its ability to lower acoustic power level and cool the engine room. This study explains the aerodynamic and acoustic features of the designed fans with the use of BEM analysis and forklift test results.

Constructed Sound Field of an Induction Motor Using Cylindrical Acoustic Holography (원통형 음향 홀로그래피를 이용하여 구성한 유도전동기의 방사 음장)

  • 김시문;김양한
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.919-929
    • /
    • 1997
  • Induction motors are used in many areas to transform electrical energy to mechanical energy. In the design of an induction motor, not only energy efficiency but also noise becomes an important factor. To effectively address the noise problem, it will be convenient if one can see where and how noise is generated and propagated. In this study sound radiation by an induction motor is visualized using cylindrical acoustic holography. To minimize the bias error by window effect Minimum Error Window(MEW) is used. Its performance is verified by numerical simulations. Based on these theoretical understanding, sound pressure measurement with an induction motor are performed. Not only sound radiation are visualized but sound pressure level and sound power level are also estimated. Results show that the main source is located at nearly bottom part of the motor and the total sound pressure level is 49dB, which satisfies the guideline value suggested by the KS C 4202.

  • PDF

Tendency of Calibration and Test for Acoustic Field in KRISS (KRISS에서 수행된 음향관련 교정 및 시험 동향)

  • 서재갑;권휴상;정성수;조문재;서상준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.448-452
    • /
    • 2002
  • We report the number of calibration and test for acoustic field which were conducted in KRISS between the year of 1990 and 2001. The items contain sound level meter and calibrator for calibration and sound absorption coefficient, transmission loss, sound pressure level of siren, sound pressure level and power of acoustic instrument and relative accessories for test. The data show that the number of them have been increased continuously.

  • PDF

Experimental Study on Source Level Estimation Techniques of Underwater Sound Source in Reverberant Water Tank (잔향수조 내 수중음원의 음원레벨 추정기법에 관한 실험연구)

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.358-363
    • /
    • 2019
  • The acoustic power is used as a primary index characterizing underwater sound sources and could be defined by its source level. The source level has been assessed using various experimental techniques such as the reverberation time method and reverberant tank plot method. While the reverberation time method requires reverberation time data extracted in a preliminary experiment in a reverberant water tank, the reverberant tank plot method only needs acoustic pressure data directly obtained at the reverberation water tank. In this research, these experimental techniques were studied in comparative experiments to estimate the source levels of underwater sources in a reverberant water tank. This paper summarizes the basic theories and procedures of these experimental techniques and presents the experimental results for an underwater source in a long cuboid water tank using each technique, along with a discussion.

Prediction and Measurement of Acoustic Loads Generated by KSR-III Propulsion System (KSR-III 로켓의 추진기관에 의한 음향 하중 예측 및 측정)

  • Park, Soon-Hong;Chun, Young-Doo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.853-856
    • /
    • 2002
  • Rocket propulsion systems generate very high-level noise (acoustic loads), which is due to supersonic jet emitted by rocket engine. In practice, the sound power level of rocket propulsion systems is over 180 dB. This high level noise excites rocket structures and payloads, so that it causes the structural failure and electronic malfunction of payloads. Prediction method of acoustic loads of rocket enables us to determine the safety of payloads. A popular prediction method is based on NASA SP-8072. This method was used to predict the acoustic loads of KSR-III rocket. Measurement of acoustic loads by KSR-III propulsion system was performed in the stage qualification test. The predicted results were compared with the measured ones.

  • PDF

A Study on Three-Dimensional Flow Analysis and Noise Source of Sirocco Fan (시로코 팬의 3차원 유동해석 및 소음원에 관한 연구)

  • Kang, Jeong-Seok;Kim, Jin-Taek;Lee, Cheol-Hyung;Baek, Byung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.896-902
    • /
    • 2018
  • This study examined the flow and noise inside a sirocco fan for ventilation as a commercial program. To confirm only the location and power of the noise source, flow analysis was performed with steady state flow analysis. Through flow analysis, the flow was observed in the sirocco fan and the velocity vector. The pressure distribution inside was observed with contours. From the results of steady analysis, the position and size of the noise source could be seen using the 'Curle surface acoustic power' and 'Proudman acoustic power'. The Curle surface acoustic power can be used to observe the noise from the surface. The Proudman acoustic power can be used to detect noise generated in the flow region because the position and size of the noise source generated inside the sirocco fan can be seen only in the steady state. Therefore it is necessary to further analyze the unsteady state to check the frequency of the noise generated. This study provides basic data for improving the performance of the Sirocco fan and reducing the noise.

Effect of Suction Nozzle Modification on the Performance and Aero-acoustic Noise of a Vacuum Cleaner

  • Park, Cheol-Woo;Lee, Sang-Ik;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1648-1660
    • /
    • 2004
  • The suction nozzle of a vacuum cleaner was modified to enhance the power performance and to reduce the airflow-induced acoustic noise. The suction power efficiencies of the vacuum cleaner were measured for various nozzles; (1) original nozzle, (2) original nozzle with modified trench height, (3) original nozzle with modified connecting chamber, and (4) a combination of (2) and (3). In addition, the suction pressure and sound pressure level around the suction nozzle were measured to validate the reduction of acoustic noise. The power efficiency and mean suction pressure increased when the trench height of the suction nozzle was increased. This was attributed to the suppression of the flow separation in the suction channel. Modification of the connecting chamber in the original nozzle, which had an abrupt contraction from a rectangular chamber into a circular pipe, into a smooth converging contraction substantially improved the suction flow into the connecting pipe. When both modifications were applied simultaneously, the resulting suction nozzle was more effective from the viewpoints of aerodynamic power increase and sound pressure level reduction.

Design of Multilevel Variable Output Voltage AC-DC Converter for Power Amplifier of Underwater Acoustic Sensor (수중 음향센서용 전력증폭기를 위한 멀티레벨 가변전압출력 AC-DC 전원회로 설계)

  • Lee, Chang-Yeol;Kim, In-Dong;Nho, Eui-Cheol;Moon, Won-Kyu;Kim, Won-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.72-83
    • /
    • 2013
  • The paper proposes a new multilevel variable output voltage AC/DC Converter for power supply of power amplifiers used in underwater acoustic sensors. The proposed multilevel variable output voltage AC/DC Converter is composed of two parts. One as the input section is the high efficiency phase-shifted PWM full bridge DC-DC converter to get multiport power sources. The other as the output section is composed of two flying-capacitor 3-level DC-DC converters and a diode bridge circuit to get fast-response and multilevel variable output voltage for an envelope amplifier. Also the paper suggests the detailed circuit topology and design guideline of multilevel variable output voltage AC/DC converter. It also proposes the power balanced control method between 3-level converters and the voltage balanced algorithm for flying capacitors. Its characteristics should be verified by the detailed simulation results. It is anticipated that the proposed converter will be used very well for power amplifiers used in underwater acoustic sensors.

Study on Noise Control for Piping System of BFP in a Power Plant (화력발전소 보일러 급수용 펌프 배관계의 이상소음 저감에 관한 연구)

  • 양경현;조철환;배춘희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.490-494
    • /
    • 2004
  • The purpose of this paper was to identify the mechanism that caused abnormal vibration and noise on the piping system connected to discharge flow of BFP(Boiler Feed water Pump) in a coal fired power plant, and to develop the device that can reduce the level of abnormal vibration and noise. Major results of this project can be summarized as follows: First, we analyzed the acoustic mode for the discharge piping of BFP to trace a path of the noise, and assumed that noise and vibration on the piping system can be related with length of pipe. Second, a minimized model of the piping system was set up to simulate abnormal vibration and noise within the specific range of operating frequencies, and as a result we confirmed that the acoustic mode affected the piping system considerably. Finally the test device which can reduce the level of abnormal noise and vibration was built to verify validity applying for the piping system. Then we concluded that the noise and vibration generated from the piping system was attributed to the acoustic resonance in piping system, and so developed new device which can reduce the level of noise and vibration under 40%. Put Abstract here.

  • PDF

A Study on the Acoustic Power Estimation in the Blower for a Vehicle Air-handling System (승용차 공조계용 블로우어의 음향출력 평가에 관한 연구)

  • Kim, Seock-Hyun;Yoo, Sung-Woo
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.87-93
    • /
    • 1997
  • A Special purpose program, based on the dimensional analysis, was developed to estimate the wide band turbulent noise in the blower of vehicle airhandling system. Acoustic power level was measured at 4 rating points around the operating condition. The experiment was performed on the reference blower model using international standard chamber, which could measure acoustic power according to the air-handling performance. Analytical model of the blower noise was determined by the measured data. Using the analytical acoustic model, it was possible to estimated the effect by the change of the operating condition, such as flow rate, static pressure and wheel rotating speed, furthermore, the diameter and the width of blower.

  • PDF