• Title/Summary/Keyword: Acoustic power level

Search Result 144, Processing Time 0.023 seconds

Development of Electronic Ballast with Constant Power Output Controller for 250W MHD Lamp (250W MHD램프용 정출력 전자식 안정기의 개발)

  • 정동열;박종연
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.99-102
    • /
    • 2001
  • In this paper, the electronic ballast was developed to control 250W metal halide lamp. To avoid acoustic resonance phenomenon, we calculated the acoustic resonance band and determined the driving frequence to from 70kHz to 100kHz. Due to the switching loss of MOSFET, many problems are caused in the inverter circuit during lighting the lamp, so we have reduced the loss by connecting the capacitor to reduce inrush current In this paper, main research area is to find the methods to operate the Iamp on regulated constant output. After detecting the current I and voltage V of the lamp, we changed the driving frequency by changing the DC voltage level.

  • PDF

Characteristics of the Acoustic Emission Waveforms from the Fatigue Crack Propagation of 2024 Aluminum Alloy with Rivet Hole (리벳구멍을 갖는 2024 알루미늄 합금의 피로 균열 진전 동안에 발생한 음향방출 파형 특성)

  • 남기우;안석환
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.52-56
    • /
    • 2001
  • This study were looks at the effect of the initial cut length or stress concentration level, on the wave forms produced by crack propagation. The signals were collected, then classified visually for each type of sample. They were put into three classes according to their shapes in the time and frequency domain. Each class should domain signals which could be correlated to a certain micro-failure mechanism that occurs during the fatigue process. Classes of these signals compared, with each sample. To see if there were any classes common to the three samples. The fatigue test attempted to determine if the initial cut length has any influence on the type of signals.

  • PDF

An Application of High-Power Ultrasound to Rubber Recycling

  • Hong, Chang-Kook;Isayev, A.I.
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.103-121
    • /
    • 2003
  • The application of powerful ultrasound to rubber recycling is a very recent field of study. An ultrasonic field creates high frequency extension-contraction stresses by acoustic cavitation. The breakdown of rubber network occurs primarily around pulsating cavities due to the highest level of strain produced by high-power ultrasound. Stronger reductions of cross-link density were observed at a higher pressure, indicating an important role of pressure during ultrasonic recycling. Visible bubbles were observed during ultrasonic treatment as a proof of acoustic cavitation. Shearing effect has a significant influence on improving the efficiency of ultrasonic treatment. After the ultrasonic treatment, the cross-link densities of NR/SBR blends were lower than those of NR and SBR due to the reduced degree of unsaturation and chemical reactions. Carbon black fillers increase the probability of bond scission during ultrasonic treatment, due to the restricted mobility. The mechanical properties of ground tire rubber (GRT)/HDPE blends were improved by ultrasonic treatment and dynamic revulcanization. Ultrasonic treatment of GRT in the presence of HDPE matrix was found to give better mechanical properties due to the chemical reactions between rubber and plastic phases.

Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames (난류 제트확산화염의 연소소음 특성에 관한 실험연구)

  • 김호석;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.

A Study of the Fabrication and Enhancement of Film Bulk Acoustic Wave Resonator using Two-Step Deposition Method of Piezoelectric Layer (압전층의 2단 증착법을 이용한 체적 음향파 박막형 공진기의 제작과 성능향상에 관한 연구)

  • Park Sung-Hyun;Chu Soon-Nam;Lee Neung-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.308-314
    • /
    • 2005
  • The 2 GHz film bulk acoustic wave resonator(FBAR), one of the most necessary device of the next generation mobile communication system, consisted of solidly mounted resonator(SMR) structure using Brags reflector, was researched in this paper The FBAR applied SiO$_{2}$ and W had large difference of the acoustic impedance to reflector Al to electrode and ZnO to piezoelectric layer. Specially, the FBAR applied the two-step deposition method to improve the c-axis orientation and increase reproducibility of the fabrication device had good performance. The electrical properties of plasma such as impedance, resistance, reactance, $V_{pp},\;I{pp}$, VSWR and phase difference of voltage and current, was analyzed and measured by RF sensor with the variable experiment process factors such as gas ratio, RF power and base vacuum level about concerning the thickness, c-axis orientation, adhesion and roughness. The FBAR device about the optimum condition resulted reflection loss(S$_{11}$) of -17 dB, resonance frequency of 1.93 GHz, electric-mechanical coefficient(k$_{eff}$) of 2.38 $\%$ and Qualify factor of 580. It was seen better qualify than the common dielectric filter at present and expected on business to the filter device of 2 GHz bandwidth with the MMIC technology.

Analysis of acoustic emission signals during fatigue testing of a M36 bolt using the Hilbert-Huang spectrum

  • Leaman, Felix;Herz, Aljoscha;Brinnel, Victoria;Baltes, Ralph;Clausen, Elisabeth
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.13-25
    • /
    • 2020
  • One of the most important aspects in structural health monitoring is the detection of fatigue damage. Structural components such as heavy-duty bolts work under high dynamic loads, and thus are prone to accumulate fatigue damage and cracks may originate. Those heavy-duty bolts are used, for example, in wind power generation and mining equipment. Therefore, the investigation of new and more effective monitoring technologies attracts a great interest. In this study the acoustic emission (AE) technology was employed to detect incipient damage during fatigue testing of a M36 bolt. Initial results showed that the AE signals have a high level of background noise due to how the load is applied by the fatigue testing machine. Thus, an advanced signal processing method in the time-frequency domain, the Hilbert-Huang Spectrum (HHS), was applied to reveal AE components buried in background noise in form of high-frequency peaks that can be associated with damage progression. Accordingly, the main contribution of the present study is providing insights regarding the detection of incipient damage during fatigue testing using AE signals and providing recommendations for further research.

Noise Control of Hard Disk Drive Using Structural Mobility Analysis (STRUCTURAL MOBILITY 분석을 통한 하드 디스크 드라이브의 소음제어(현장개발사례: SAMSUNG HDD 'SPINPOINT V20/P20 SERIES' ))

  • Kang, Seong-Woo;Han, Yun-Sik;Hwang, Tae-Yeon;Son, Young;Oh, Dong-Ho;Pham, Tho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.911-916
    • /
    • 2001
  • Structural acoustic modification method based on the structural mobility analysis is applied to reduce the structure-borne noise radiated from hard disk drive system. Sound intensity techniques and ODS(Operational Deflection Shape) techniques are also used in order to provide the structural acoustic information for the mobility modification. The sound intensity is for the acoustic visualization of the noise source locations, and the ODS is for the visualization of the vibration pattern and its dynamic characteristics of the noise sources. Using visualization information of sound and vibration, local structural input mobility is reduced in the frequency band of interest by designing asymmetrical wave-stringer structure in the wave-number domain as well as frequency domain. The overall sound pressure level is reduced by 4dB and its controlled sound power radiated from the disk drive is proved to under 2.8Bel in idle-spinning mode and 3.1 Bel in random-seeking mode, which are the lowest noise levels in the hard disk drive industry.

  • PDF

Trial manufacture of dual frequency acoustic pinger to minimize cetacean bycatch (고래류 혼획을 최소화하기 위한 다주파 음향 경고시스템의 시험 제작)

  • Lee, Yoo-Won;Shin, Hyeong-Il;Kim, Seok-Jae;Seo, Du-Ok;Lee, Dae-Jae;Kim, Zang-Geun;Hwang, Doo-Jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.3
    • /
    • pp.207-212
    • /
    • 2005
  • Dual frequency acoustic pinger(AP) was manufactured to reduce study effect by long-term use of developed single frequency AP to prevent cetacean bycatch. Directivity characteristic of transducer was the omnidirectional pattern which showed less than ${\pm}3dB$ the change range of sensitivity on the beam pattern of right and left. Source power level(SPL) was 1384311pa with epoxy window before casing however after casing 1170B11Pa at sea. Dual frequency Af was tested to identify the avoidance behavior of bottlenose dolphin by its working. However the efficiency of dual frequency AP about the study effect was verified experiment repeatedly using single and dual frequency AP.

A Comparative Study on the Characteristics of Thermoacoustic Waves by the Stack Channel Number (스택의 채널 수에 다른 열음향파의 특성 비교 연구)

  • Park, Sung-Seek;Cheon, Won-Gi;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.8-14
    • /
    • 2013
  • The conversion of solar energy into acoustic waves is experimentally studied. Measurements were made on the Sound Pressure Level(SPL), onset time and the temperature gradient across the stack, with the Cell Per Square Inch(CPSI) of stack changed. A pyrex resonance tube is used with a honey-comb structure ceramic stack along with Ni-Cr and Cu wires. An AL1 acoustical analyzer was used to measure the SPL and frequency of acoustic waves whereas K-type thermocouples were hired to estimate temperature gradients. As a result, when the supply electric power was 25W, maximum SPLs of 104.1 dB, 109.4 dB and 112.8 dB were detected for the stacks of 200, 300 and 400 CPSI and their respective stack positions of 70mm, 60mm and 50mm from the closed end.

Optimal Structural Design of a Flextensional Transducer Considering the Working Environment (적용환경을 고려한 Flextensional 변환기의 최적구조 설계)

  • Kang, Kook-Jin;Roh, Yong-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1063-1070
    • /
    • 2008
  • The performance of an acoustic transducer is determined by the effects of many design variables, and mostly the influences of these design variables are not linearly independent of each other. To achieve the optimal performance of an acoustic transducer, we must consider the cross-coupled effects of the design variables. In this study, the variation of the performances of underwater acoustic transducer in relation to its structural variables was analyzed. In addition, the new optimal design scheme of an acoustic transducer that could reflect not only individual but also all the cross-coupled effects of multiple structural variables, and could determine the detailed geometry of the transducer with great efficiency and rapidity was developed. The validation of the new optimal design scheme was verified by applying the optimal structure design of a flextensional transducer which are the most common use for high power underwater acoustic transducer. With the finite element analysis(FEA), we analyzed the variation of the resonance frequency, sound pressure, and working depth of a flextensional transducer in relation to its design variables. Through statistical multiple regression analysis of the results, we derived functional forms of the resonance frequency, sound pressure, and working depth in terms of the design variables. By applying the constrained optimization technique, Sequential Quadratic Programming Method of Phenichny and Danilin(SQP-PD), to the derived function, we designed and verified the optimal structure of the Class IV flextensional transducer that could provide the highest sound pressure level and highest working depth at a given operation frequency of 1 kHz.