• Title/Summary/Keyword: Acoustic intensity

Search Result 373, Processing Time 0.02 seconds

Physiologic Phonetics for Korean Stop Production (한국어 자음생성의 생리음성학적 특성)

  • Hong, Ki-Hwan;Yang, Yoon-Soo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.17 no.2
    • /
    • pp.89-97
    • /
    • 2006
  • The stop consonants in Korean are classified into three types according to the manner of articulation as unaspirated (UA), slightly aspirated (SA) and heavily aspirated (HA) stops. Both the UA and the HA types are always voiceless in any environment. Generally, the voice onset time (VOT) could be measured spectrographically from release of consonant burst to onset of following vowel. The VOT of the UA type is within 20 msec of the burst, and about 40-50 msec in the SA and 50-70 msec in the HA. There have been many efforts to clarify properties that differentiate these manner categories. Umeda, et $al^{1)}$ studied that the fundamental frequency at voice onset after both the UA and HA consonants was higher than that for the SA consonants, and the voice onset times were longest in the HA followed by the SA and UA. Han, et $al^{2)}$ reported in their speech synthesis and perception studies that the SA and UA stops differed primarily in terms of a gradual versus a relatively rapid intensity build-up of the following vowel after the stop release. Lee, et $al^{3)}$ measured both the intraoral and subglottal air pressure that the subglottal pressure was higher for the HA stop than for the other two stops. They also compared the dynamic pattern of the subglottal pressure slope for the three categories and found that the HA stop showed the most rapid increase in subglottal pressure in the time period immediately before the stop release. $Kagaya^{4)}$ reported fiberscopic and acoustic studies of the Korean stops. He mentioned that the UA type may be characterized by a completely adducted state of the vocal folds, stiffened vocal folds and the abrupt decreasing of the stiffness near the voice onset, while the HA type may be characterized by an extensively abducted state of the vocal folds and a heightened subglottal pressure. On the other hand, none of these positive gestures are observed for the SA type. Hong, et $al^{5)}$ studied electromyographic activity of the thyroarytenoid and posterior cricoarytenoid (PCA) muscles during stop production. He reported a marked and early activation of the PCA muscle associated with a steep reactivation of the thyroarytenoid muscle before voice onset in the production of the HA consonants. For the production of the UA consonants, little or no activation of the PCA muscle and earliest and most marked reactivation of the thyroarytenoid muscle were characteristic. For the SA consonants, he reported a more moderate activation of the PCA muscle than for the UA consonant, and the least and the latest reactivation of the thyroarytenoid muscle. Hong, et $al^{6)}$ studied the observation of the vibratory movements of vocal fold edges in terms of laryngeal gestures according to the different types of stop consonants. The movements of vocal fold edges were evaluated using high speed digital images. EGG signals and acoustic waveforms were also evaluated and related to the vibratory movements of vocal fold edges during stop production.

  • PDF

Acoustic Doppler Current Profiler Bottom Tracking Survey of Flow Structures around Geumo Archipelago in the Southern Waters of Korea (ADCP bottom tracking에 의한 금오열도 주변의 해수유동)

  • Choo, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.589-600
    • /
    • 2019
  • In order to investigate the flow structures around Geumo archipelago on Southern Waters of Korea, water movements were measured for 25 hours during spring tide in May and neap tide in September 2002 using ADCP (Acoustic Doppler Current Profiler) attached to a running boat. Dominant directions of ebb and flood current at spring tide are SE-NW, representing the average flow rate of approximately 40cm/s in the surface layer. However because of the topographical reason, the direction and speed of the flow in the narrow waterway sea area around the northwest of Gae Island were different. There was no notable baroclinic component of tidal flow at spring tide. This indicates that the sea area has been actively engaged in vertical mixing due to island wake or eddy due to narrow waterways, shallow water depth and rapid flow rate around archipelago. At neap tide, dominant directions of tidal flows are SSE-NNW and the average flow rate in the surface layer is about 85 percent of the spring tide. The duration and intensity of the flow direction are shorter and less dominant than the spring tide. It is expected that asymmetrical tidal mixing will occur due to vertical velocity shear and horizontal eddies. From daily mean tidal flows obtained from the ADCP observation, it was found that the northwest of Gae Island have flows in NW~NE, the west of Geumo Island have the average currents of up to 21 cm/s WSW~SSW and counterclockwise circulation or eddy currents are formed in the west of Sori Island.

Development and Application of Mode II Fracture Toughness Test Method Using Rock Core Specimen (시추코어를 이용한 암석의 mode II 파괴인성 시험법 개발과 적용)

  • Jung, Yong-Bok;Park, Eui-Seob;Kim, Hyunwoo
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.396-408
    • /
    • 2016
  • Rock fracture mechanics has been widely applied to various fields of rock and civil engineering. But most researches covered mode I behavior, though mode II behavior is dominant in rock engineering. Until now, there is only one ISRM suggested method for mode II toughness of rock. A new SCC (Short Core in Compression) mode II toughness test method was developed considering 1) application of confining pressure, 2) easiness of notch creation, 3) utilization of existing equipment, 4) simple test procedure. The stress intensity factors were determined by 3D finite element method considering line and distributed loading conditions. The tests with granite specimens were carried out using MTS 815 rock test system with a loading rate of 0.002 mm/s. The mean value of mode II fracture toughness of granite showed $2.33MPa{\sqrt{m}}$. Mode I toughness of the same granite was $1.12MPa{\sqrt{m}}$, determined by Brazilian disk test and $K_{IIC}/K_{IC}=2.08$. The smooth fracture surface with rock powder formation also supported mode II behavior of SCC method. The SCC method can be used for the determination of mode II fracture toughness of rocks based on the current results.

The Development of Ultrasonic Hyperthermia Simulator to Improve the Efficiency of Ultrasonic Therapy (초음파 치료의 효율성 향상을 위한 초음파 온열 시뮬레이터 개발)

  • Yu, W.J.;Noh, S.C.;Jung, D.W.;Park, J.H.;Choi, M.J.;Choi, H.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.418-427
    • /
    • 2009
  • As many people are westernizing their life style and food consumption habits, a number of patients who have malignant tumors which grow very rapidly and hazardously destroy the human body are increasing. Ultrasonic hyperthermia is not only one of the tumor treatment methods which employs the non-radioactive ultrasonic waves to increase the temperature at the tumor region up to $40\sim45^{\circ}C$ to destroy and suppress tumor cells but also has been proved by many studies. Due to the rapid development of High Intensity Focused Ultrasound(HIFU), the ultrasound hyperthemia extensively boosts its applications in clinical field. For those reasons, Computed simulation factor should be needed before inspection to patients. To prove efficiency of ultrasonic hyperthermia, precise acoustic field measurement considering tissue characteristics and a heating experiment with tissue mimicking material phantom were conducted for effectiveness of simulation program. Finally, in this study, the computer simulation program verified the anticipated temperature effects induced by ultrasound hyperthermia. In the near future, it is hoped that this simulation program could be utilized to improve the efficiency of ultrasound hyperthermia.

Effects of High-harmonic Components on the Rayleigh Indices in Multi-mode Thermo-acoustic Combustion Instability

  • Song, Chang Geun;Yoon, Jisu;Yoon, Youngbin;Kim, Young Jin;Lee, Min Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.518-525
    • /
    • 2016
  • This paper presents the characteristics of non-fundamental multi-mode combustion instability and the effects of high-harmonic components on the Rayleigh criterion. Phenomenological observations of multi-harmonic-mode dynamic pressure waves regarding the intensity of harmonic components and the source of wave distortion have been explained by introducing examples of second- and third-order harmonics at various amplitudes. The amplitude and order of the harmonic components distorted the wave shapes, including the peak and the amplitude, of the dynamic pressure and heat release, and consequently the temporal Rayleigh index and its integrals. A cause-and-effect analysis was used to identify the root causes of the phase delay and the amplification of the Rayleigh index. From this analysis, the skewness of the dynamic pressure turned out to be a major source in determining whether multi-mode instability is driving or damping, as well as in optimizing the combustor design, such as the mixing length and the combustor length, to avoid unstable regions. The results can be used to minimize errors in predicting combustion instability in cases of high multi-mode combustion instability. In the future, the amount of research and the number of applications will increase because new fuels, such as fast-burning syngases, are prone to generating multi-mode instabilities.

Sonolytical Decomposition of NHCs in Aqueous Solution (수계중 이환형 질소고리화합물(NHCs)의 초음파적 분해)

  • Yoo, Young-Eok;Maeda, Yasuaki
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.393-397
    • /
    • 2007
  • The sonolytic decomposition of NHCs(Nitrogen Heterocyclic Compounds), such as atrazine[6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], simazine(6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine), trietazine(6-chloro-N,N,N'-triethyl-1,3, 5-triazine-2,4-diamine), in water was investigated at a ultrasound frequency of 200kHz with an acoustic intensity of 200W under argon and air atmospheres. The concentration of NHCs decreased with irradiation, indicating pseudo-first-order kinetics. The rates were in the range $1.06{\sim}2.07({\times}10^{-2}min^{-1})$ under air and $1.30{\sim}2.59({\times}10^{-2}min^{-1})$ under argon at a concentration of $200{\mu}M$ of NHCs. The rate of hydroxyl radicals(${\bullet}{OH}$) formation from water is $19.8{\mu}M\;min^{-1}$ under argon and $14.7{\mu}M\;min^{-1}$ under air in the same sonolysis conditions. The sonolysis of NHCs is effectively inhibited, but not completely, by the addition of t-BuOH(2-methyl-2-propanol), which is known to be an efficient ${\bullet}{OH}$ radical scavenger in aqueous sonolysis. This suggests that the main decomposition of NHCs proceeds via reaction with ${\bullet}{OH}$ radical; a thermal reaction also occurs, although its contribution is small. The addition of appropriate amounts of Fenton's reagent $[Fe^{2+}]$ accelerates the decomposition. This is probably due to the regeneration of ${\bullet}{OH}$ radicals from hydrogen peroxide, which would be formed from recombination of ${\bullet}{OH}$ radicals and which may contribute a little to the decomposition.

DOA(Direction of Arrival) Estimation based Beamforming technique for VBeam Reception Performance Enhancement (VBeam 수신 성능 개선을 위한 입사각 추정 기반의 빔형성 알고리즘 연구)

  • Lee, Jae-Eun;Shim, Tae-Bo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.212-221
    • /
    • 2010
  • The bubbles could be created from multiple source in the surface of ocean. The bubbles which are created like this affect to the intensity and the sound speed of acoustic wave which are used from the ocean. From the research, it observed Reverberation from the sea surface, using Vbeam transmission and reception equipment that was a cross-shaped Array, from 2008 July 2nd to July 3rd at 4Km from the East Sea Mookho port. It is difficult to analyze data because the received signal has ambient noise and occurrence ISI(Inter Symbol Interference) for multipath. This paper remove that ambient noise and ISI using the directions of arrival beamforming and the filter and sum beamforming. After beamforming, a following DFE(Decision Feedback Equalizer) removes the remaining multipath components. Experimental results show that the proposed technique reduce the errors caused by ISI.

Coherent Analysis of vehicle HVAC Using the MDSA Method (다차원 해석법을 이용한 자동차 공조시스템의 기여도분석)

  • Oh Jae-Eung;Hwang DongKun;Abu Aminudin;Lee Jung-Youn;Kim SungSoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.143-150
    • /
    • 2005
  • To verify applicability of multi-dimensional spectral analysis (MDSA) fur noise source identification two different approaches which are frequency response and coherent function have been investigated. The coherence function approach appears able to separate the correlated system when the noise sources were coherent. In this study, we identify contribution of structure-borne-noise of vehicle HVAC system using MDSA method. Firstly, to identify the applicability of MDSA method, 4-inputs of vehicle HVAC system were the signals measured by accelerometers attached on the selected noise sources which were composed of blower, evaporator, heater and duct. While 1-output which was driver's position sound was the SPL signals measured by a remote microphone, when the blower motor was operating. We identify efficiency of systems modeled with four Inputs/single output through ordinary coherence function (OCF) and partial coherence function (PCF). As a result of experiment, the blower accounted for $62-88\%$ of the overall level of sound energy density. Also, according to the analysis of acoustic signal and vibration signals measurement, an investigation of the noise source identification in the vehicle HVAC is presented. With the sound intensity method, the major sources of the vehicle HVAC radiation are verified. Also the method of improving the noise reduction is proposed by attaching damping patch access to blower motor and noise reduction is verified.

Development of a Practical Two-Microphone Impedance Tube Method for Sound Transmission Loss Measurement of Sound Isolation Materials

  • Ro, Sing-Nam;Hwang, Yoon;Lee, Dong-Hoon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.105-113
    • /
    • 2003
  • This study developed a practical two-microphone impedance tube method to measure the sound transmission loss of sound isolation materials without the use of an expensive reverberation room or an acoustic intensity probe. In order to evaluate the validation and applicability of the two-microphone impedance tube method, sound transmission losses for several sound isolation materials with different surface density and bending stiffness were measured, and the measured values were compared with the results from the reverberation room method and the theory. From the experimental results, it was found that the accuracy of sound transmission loss obtained by the impedance tube method depends upon the diameter size of the impedance tube (i.e., tested sample size). For sound isolation materials having relatively large bending stiffness such as acryl, wood, and aluminum plates, it was found that the impedance tube method proposed by this study was not valid to measure the sound transmission loss. On the other hand, for sound isolation materials having relatively small bending stiffness such as rubber, polyvinyl, and asphalt sheets, the comparisons of transmission loss between the results from the impedance tube method and the theory showed a good agreement within the range of the frequencies satisfying the normal incidence mass law. Therefore, the two-microphone impedance tube method proposed by this study can be an effective measurement method to evaluate the sound transmission loss for soft sound isolation sheets having relatively small bending stiffness.

Decomposition of Nitogen Heterocyclic Compounds(NHCs) in Aqueous Solution by Sonication

  • Yoo, Young-Eok;Maeda, Yasuaki
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.171-176
    • /
    • 2003
  • The sonolytic decomposition of NHCs, such as atrazine[6-chloro-N-ethyl-N' -(1-methylethyl)-1,3,5-triazine-2,4-diamine], simazine( 6-chloro-N,N' -diethyl-l ,3,5-triazine-2,4-diamine), trietazine(6-chloro-N,N,N'-triethyl-l,3,5-triazine-2,4-diamine), in water was investigated at a ultrasound frequency of 200kHz with an acoustic intensity of 200W under argon and air atmospheres. The concentration of NHCs decreased with irradiation, indicating pseudo-first-order kinetics. The rates were in the range 1.06∼2.07 (x10/sup -3/ min/sup -1/) under air and 1.30∼2.59(x10/sup -3/ min/sup -1/)under argon at a concentration of 200μM of NHCs. The rate of hydroxyl radicals(·OH) formation from water is 19.8μM min/sup -1/ under argon and 14.7 μM min/sup -1/ under air in the same sonolysis conditions. The sonolysis of NHCs is effectively inhibited, but not completely, by the addition of t-BuOH(2-methyl-2-propanol), which is known to be an efficient ·OH radical scavenger in aqueous sonolysis. This suggests that the main decomposition of NHCs proceeds via reaction with ·OH radical; a thermal reaction also occurs, although its contribution is small. The addition of appropriate amounts of Fenton's reagent [Fe/sup 2+/] accelerates the decomposition. This is probably due to the regeneration of ·OH radicals from hydrogen peroxide, which would be formed from recombination of ·OH radicals and which may contribute a little to the decomposition.

  • PDF