DOI QR코드

DOI QR Code

Sonolytical Decomposition of NHCs in Aqueous Solution

수계중 이환형 질소고리화합물(NHCs)의 초음파적 분해

  • Published : 2007.04.30

Abstract

The sonolytic decomposition of NHCs(Nitrogen Heterocyclic Compounds), such as atrazine[6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], simazine(6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine), trietazine(6-chloro-N,N,N'-triethyl-1,3, 5-triazine-2,4-diamine), in water was investigated at a ultrasound frequency of 200kHz with an acoustic intensity of 200W under argon and air atmospheres. The concentration of NHCs decreased with irradiation, indicating pseudo-first-order kinetics. The rates were in the range $1.06{\sim}2.07({\times}10^{-2}min^{-1})$ under air and $1.30{\sim}2.59({\times}10^{-2}min^{-1})$ under argon at a concentration of $200{\mu}M$ of NHCs. The rate of hydroxyl radicals(${\bullet}{OH}$) formation from water is $19.8{\mu}M\;min^{-1}$ under argon and $14.7{\mu}M\;min^{-1}$ under air in the same sonolysis conditions. The sonolysis of NHCs is effectively inhibited, but not completely, by the addition of t-BuOH(2-methyl-2-propanol), which is known to be an efficient ${\bullet}{OH}$ radical scavenger in aqueous sonolysis. This suggests that the main decomposition of NHCs proceeds via reaction with ${\bullet}{OH}$ radical; a thermal reaction also occurs, although its contribution is small. The addition of appropriate amounts of Fenton's reagent $[Fe^{2+}]$ accelerates the decomposition. This is probably due to the regeneration of ${\bullet}{OH}$ radicals from hydrogen peroxide, which would be formed from recombination of ${\bullet}{OH}$ radicals and which may contribute a little to the decomposition.

Keywords

References

  1. Mason T. J., Lorimer J. P., 1988, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Ellis Horwood, Chichester
  2. Mason T. J., Lorimer J. P., 1991, Sonochemistry: User's Guide to Applications in Chemistry and Chemical Engineering, Ellis Horwood, Chichester
  3. Suslick K. S., 1988, Ultrasound: Its Chemical, Physical and Biological Effects, VCH, Weinheim
  4. Kotronarou A., Hoffmann M. R., 1992, Decom- position of parathion in aqueous solution by ultrasonic irradiation, Environ. Sci. Technol., 26, 1460-1462 https://doi.org/10.1021/es00031a026
  5. Suslick K. S., Hammerton D. A., 1986, IEEE Trans. Ultrason. Ferrolectrics Frequency Control UFFC-33, 143-146
  6. Mizukoshi Y, Nakamura H., Sandow H., Maeda Y., Nagata Y., 1999, Sonolysis of organic liquid: Effect of vapour pressure and evaporation rate, Ultrasonics Sonochemistry, 6, 203-209 https://doi.org/10.1016/S1350-4177(99)00012-7
  7. Dewulf J., Van Langenhove H., De Visscher A., Sabbe S., 2001, Ultrasonic degradation of trichloroethylene and chlorobenzene at micromolar concentration: kinetics and modelling, Ultrasonics Sonochemistry, 143-150
  8. Yoo Y. E., Maeda Y., Howang K. T., 1997, Sonochemical destruction of aliphatic aldehydes in an aqueous solution, Kor. J. Env. Hlth. Soc., 23, 4, 39-44
  9. Cheung H. M., Bhatnagar M., Lansen G., 1991, So no chemical destruction of chlorinated hydrocarbons in dilute aqueous solution, Environ. Sci. Technol., 25, 1510-1515 https://doi.org/10.1021/es00020a024
  10. Yim B., Okuno H., Nagata Y., Maeda Y., 2001, Sonochemical degradation of chlorinated hydrocarbons using a batch and continuous flow system, Journal of Hazardous Materials, B81, 253-263
  11. Cheung H. M., Kurup S., 1994, Sonochemical destruction of CFC11 and CFC 113 in dilute aqueous solution, Environ. Sci. Technol., 28, 1619-1621 https://doi.org/10.1021/es00058a014
  12. Yoo Y. E., Maeda Y., Bandow H., 1997, Characteristics of volatil-e fatty aeids degradation in aqueous solution by the action of ultrasound, Wat. Res., 31 (6), 1532-1535 https://doi.org/10.1016/S0043-1354(96)00133-9
  13. Destaillats H., Hung H. M., Hoffinann M. R., 2000, Degradation of alkylphenol ethoxylate surfactants in water with ultrasonic irradiation, Environ. Sci. Technol., 34, 311-317 https://doi.org/10.1021/es990384x
  14. Beltran F. J., Garcia J. F., Acedo B., 1994, Removal of geosmin and methylisobroneol from drink water by adsorption on ultrastable zeolite-Y, Wat. Res., 28, 2153-2164 https://doi.org/10.1016/0043-1354(94)90027-2
  15. Lai M. S., Jensen J. N., Weber A. S., 1995, Oxidation of simazine: Ozone, ultraviolet, and combined ozone/ultraviolet oxidation, Water Environ. Res., 67, 340-346 https://doi.org/10.2175/106143095X131565
  16. Mizukoshi Y., Nakamura H, Bandow H., Maeda Y., Nagata Y., Sonolysis of organic liquid: Effect of 'vapour pressure and evaporation rate, Ultrasonies Sonochemistry, 1999, 6, 203-209 https://doi.org/10.1016/S1350-4177(99)00012-7
  17. Arnold S. M., Hickey W. J., Harris R. F., 1995, Degradation of atrazine by Fenton's reagent: condition optimization and product quantification, Environ. Sci. Technol., 29, 2083-2089 https://doi.org/10.1021/es00008a030
  18. Pelizzeti E., Maurino Y., Minero C., Carlin Y., Parmauro E., Zerbinati O., Tosato M. L., 1990, Photoreduction of Fe(III) by hydroxycarboxylic acids in seawater, Environ. Sci. Technol., 24, 1559-1565 https://doi.org/10.1021/es00080a016