• Title/Summary/Keyword: Acoustic emission signal

Search Result 372, Processing Time 0.026 seconds

Classification of Acoustic Emission Signals for Fatigue Crack Opening and Closure by Artificial Neural Network Based on Principal Component Analysis (주성분 분석과 인공신경망을 이용한 피로균열 열림.닫힘 시 음향방출 신호분류)

  • Kim, Ki-Bok;Yoon, Dong-Jin;Jeong, Jung-Chae;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.532-538
    • /
    • 2002
  • This study was performed to classify the fatigue crack opening and closure for three kinds of aluminum alloy using principal component analysis (PCA). Fatigue cycle loading test was conducted to acquire AE signals which come from different source mechanisms such as crack opening and closure, rubbing, fretting etc. To extract the significant feature from AE signal, correlation analysis was performed. Over 94% of the variance of AE parameters could accounted for the first two principal components. The results of the PCA on AE parameters showed that the first principal component was associated with the size of AE signals and the second principal component was associated with the shape of AE signals. An artificial neural network (ANN) an analysis was successfully used to classify AE signals into six classes. The ANN classifier based on PCA appeared to be a promising tool to classify AE signals for fatigue crack opening and closure.

Mechanism of Micro-V Grooving with Single Crystal Diamond Tool (단결정 다이어몬드 공구를 이용한 Micro-V 홈 가공기구)

  • Park D.S.;Seo T.I.;Kim J.K.;Seong E.J.;Han J.Y.;Lee E.S.;Cho M.W.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1223-1227
    • /
    • 2005
  • Fine microgroove is the key component to fabricate micro-grating, micro-grating lens and so on. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. This study deals with the creation of ultra-precision micro grooves using non-rotational diamond tool and CNC machining center. The shaping type machining method proposed in the study allows to produce V-shaped grooves of $40\mu{m}$ in depth with enough dimensional accuracy and surface. For the analysis of machining characteristics in micro V-grooving, three components of cutting forces and AE signal are measured and processed. Experimental results showed that large amplitude of cutting forces and AE appeared at the beginning of every cutting path, and cutting forces had a linear relation with the cross-sectional area of uncut chip thickness. From the results of this study, proposed micro V-grooving technique could be successfully applied to forming the precise optical parts like prism patterns on light guide panel of TFT-LCD.

  • PDF

A Study on the NC Embedding of Vision System for Tool Breakage Detection (공구파손감지용 비젼시스템의 NC실장에 관한 연구)

  • 이돈진;김선호;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.369-372
    • /
    • 2002
  • In this research, a vision system for detecting tool breakage which is hardly detected by such indirect in-process measurement method as acoustic emission, cutting torque and motor current was developed and embedded into a PC-NC system. The vision system consists of CMOS image sensors, a slit beam laser generator and an image grabber board. Slit beam laser was emitted on the tool surface to separate the tool geometry well from the various obstacles surrounding the tool. An image of tool is captured through two steps of signal processing, that is, median filtering and thresholding and then the tool is estimated normal or broken by use of change of the centroid of the captured image. An air curtain made by the jetting high-pressure air in front of the lens was devised to prevent the vision system from being contaminated by scattered coolant, cutting chips in cutting process. To embed the vision system to a Siemens PC-NC controller 840D NC, an HMI(Human Machine Interface) program was developed under the Windows 95 operating system of MMC103. The developed HMI is placed in a sub window of the main window of 840D and this program can be activated or deactivated either by a soft key on the operating panel or M codes in the NC part program. As the tool breakage is detected, the HMI program emit a command for automatic tool change or send alarm to the NC kernel. Evaluation test in a high speed tapping center showed the developed system was successful in detection of the small-radius tool breakage.

  • PDF

A Phase Stabilization System of EFPI for Damage Detection of Composite (복합재료 파손 검출을 위한 EFPI 센서 위상 안정화 시스템)

  • Kim,Dae-Hyeon;Gu,Bon-Yong;Bang,Hyeong-Jun;Kim,Cheon-Gon;Hong,Chang-Seon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.44-49
    • /
    • 2003
  • In case of an extrinsic Fabry-Perot interferometric sensor, the phase compensating technique is particularly necessary in applying the interferometer to detecting acoustic emission signals because of signal-fading problems. The technique makes it possible to maintain the phase at the quadrature point. In this paper, we developed the stabilization control sensor system that is composed of a broadband light source, a tunable Fabry-Perot (F-P) filter and a control-circuit board. A tension test of a composite specimen was performed to verify if the developed system could compensate the phase change induced from the tension strain and keep the phase at the quadrature point.

Fundamental Study of Degradation Diagnosis using AE Signals with Void Discharge in XLPE Insulation (XLPE 절연체의 트리 채널내 보이드방전에 의한 AE신호로 절연열화 검출 기법 연구)

  • Lee, Sang-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • In this paper, to detect and observation the void discharges pulse signal, AE signals and tree growth characteristics in case the high voltage is applied to a XLPE sample for a power cable. We also examined the partial discharge current pulse and AE signals with the increase of the applied voltage in XLPE insulation. The experimental results show that a branch-type tree grows in the presence of the voids, and a bush-type tree grows in the absence of the voids in both samples. A rate of tree growth increases abruptly in proportional to the deterioration time in the presence of the of the voids, but in the absence of the voids, a rate of tree growth decreases as time goes by and finally a breakdown occurs. The frequency band of AE signals that are generated from the partial discharges in a XLPE sample, one of solid dielectric materials, is about 1.0[MHz].

Structural health monitoring of high-speed railway tracks using diffuse ultrasonic wave-based condition contrast: theory and validation

  • Wang, Kai;Cao, Wuxiong;Su, Zhongqing;Wang, Pengxiang;Zhang, Xiongjie;Chen, Lijun;Guan, Ruiqi;Lu, Ye
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.227-239
    • /
    • 2020
  • Despite proven effectiveness and accuracy in laboratories, the existing damage assessment based on guided ultrasonic waves (GUWs) or acoustic emission (AE) confronts challenges when extended to real-world structural health monitoring (SHM) for railway tracks. Central to the concerns are the extremely complex signal appearance due to highly dispersive and multimodal wave features, restriction on transducer installations, and severe contaminations of ambient noise. It remains a critical yet unsolved problem along with recent attempts to implement SHM in bourgeoning high-speed railway (HSR). By leveraging authors' continued endeavours, an SHM framework, based on actively generated diffuse ultrasonic waves (DUWs) and a benchmark-free condition contrast algorithm, has been developed and deployed via an all-in-one SHM system. Miniaturized lead zirconate titanate (PZT) wafers are utilized to generate and acquire DUWs in long-range railway tracks. Fatigue cracks in the tracks show unique contact behaviours under different conditions of external loads and further disturb DUW propagation. By contrast DUW propagation traits, fatigue cracks in railway tracks can be characterised quantitatively and the holistic health status of the tracks can be evaluated in a real-time manner. Compared with GUW- or AE-based methods, the DUW-driven inspection philosophy exhibits immunity to ambient noise and measurement uncertainty, less dependence on baseline signals, use of significantly reduced number of transducers, and high robustness in atrocious engineering conditions. Conformance tests are performed on HSR tracks, in which the evolution of fatigue damage is monitored continuously and quantitatively, demonstrating effectiveness, adaptability, reliability and robustness of DUW-driven SHM towards HSR applications.

CMP process monitoring system using AE sensor (AE를 이용한 CMP 공정 감시에 관한 연구)

  • Park, Sun-Joon;Kim, Sung-Ryul;Park, Boum-Young;Lee, Hyun-Seop;Jeong, Hea-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.51-52
    • /
    • 2007
  • This paper compared wired Acoustic Emission (AE) signals with wireless AE signals. According to the material and process condition, each process signal has distinguishable characteristic to show each removal phenomenon. Therefore, wired and wireless AE sensors having different bandwidth are complementary for CMP process monitoring. Especially, the AE sensor was used to investigate abrasive and molecular-scale phenomena during CMP process, which was compatible to acquire high level frequency. In experiment, wireless AE system was used to get signals in rotary system, using bluetooth. But, it is possible to acquire only RMS signals, which can not analyze abrasive and molecular-sale phenomena. Second, wired AE system was installed using mercury slip-ring, which is suitable not only for rotation equipment but also for acquiring original signals. The acquired signals were analyzed by FFT for understanding of abrasive and molecular revel phenomena in CMP process, finally, we verified that two types of AE sensor with different bandwidth were complementary for CMP process monitoring.

  • PDF

An improved regularized particle filter for remaining useful life prediction in nuclear plant electric gate valves

  • Xu, Ren-yi;Wang, Hang;Peng, Min-jun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2107-2119
    • /
    • 2022
  • Accurate remaining useful life (RUL) prediction for critical components of nuclear power equipment is an important way to realize aging management of nuclear power equipment. The electric gate valve is one of the most safety-critical and widely distributed mechanical equipment in nuclear power installations. However, the electric gate valve's extended service in nuclear installations causes aging and degradation induced by crack propagation and leakages. Hence, it is necessary to develop a robust RUL prediction method to evaluate its operating state. Although the particle filter(PF) algorithm and its variants can deal with this nonlinear problem effectively, they suffer from severe particle degeneracy and depletion, which leads to its sub-optimal performance. In this study, we combined the whale algorithm with regularized particle filtering(RPF) to rationalize the particle distribution before resampling, so as to solve the problem of particle degradation, and for valve RUL prediction. The valve's crack propagation is studied using the RPF approach, which takes the Paris Law as a condition function. The crack growth is observed and updated using the root-mean-square (RMS) signal collected from the acoustic emission sensor. At the same time, the proposed method is compared with other optimization algorithms, such as particle swarm optimization algorithm, and verified by the realistic valve aging experimental data. The conclusion shows that the proposed method can effectively predict and analyze the typical valve degradation patterns.

An Effective Application of AE Technique for the Detection of Defects in Steel Girder Bridges (강판형교에서의 효율적인 결함검출을 위한 AE기법의 적용)

  • Kim, Sang Hyo;Yoon, Dong Jin;Lee, Sang Ho;Kim, Hyung Suk;Park, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.287-300
    • /
    • 1997
  • In this study, an effective application method of AE technique for the detection of fatigue crack in multi-girder steel bridges has been proposed. The applicability has been examined through the laboratory works with bridge model. The proposed analytical method which evaluates the remaining fatigue lives of structural members may improve the rational determination of the priority of inspection for structural members assuming to have fatigue cracks. Laboratory tests for the application of AE technique to steel girder bridges show that the frequency bands of traffic noise are in the range between 10 show that the frequency bands of traffic noise are in the range between 100~200 kHz and the AE signal raised from fatigue cracks is concentrated around 400~500 kHz. Therefore. R30 sensor is proved to be the most suitable for the detection of cracks in steel girder bridges. A linear proportionality between the crack propagation and the frequency of AE signals has been obtained. In addition, an economic and effective source location method for steel girder bridges was studied through experiments.

  • PDF

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method (EEMD법을 이용한 저속 선회베어링 상태감시)

  • Caesarendra, W.;Park, J.H.;Kosasih, P.B.;Choi, B.K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-143
    • /
    • 2013
  • Vibration condition monitoring of low-speed rotational slewing bearings is essential ever since it became necessary for a proper maintenance schedule that replaces the slewing bearings installed in massive machinery in the steel industry, among other applications. So far, acoustic emission(AE) is still the primary technique used for dealing with low-speed bearing cases. Few studies employed vibration analysis because the signal generated as a result of the impact between the rolling element and the natural defect spots at low rotational speeds is generally weak and sometimes buried in noise and other interference frequencies. In order to increase the impact energy, some researchers generate artificial defects with a predetermined length, width, and depth of crack on the inner or outer race surfaces. Consequently, the fault frequency of a particular fault is easy to identify. This paper presents the applications of empirical mode decomposition(EMD) and ensemble empirical mode decomposition(EEMD) for measuring vibration signals slewing bearings running at a low rotational speed of 15 rpm. The natural vibration damage data used in this paper are obtained from a Korean industrial company. In this study, EEMD is used to support and clarify the results of the fast Fourier transform(FFT) in identifying bearing fault frequencies.