• Title/Summary/Keyword: Acoustic emission monitoring

Search Result 292, Processing Time 0.024 seconds

Machining condition monitoring for micro-grooving on mold steel using fuzzy clustering method (퍼지 클러스터링을 이용한 금형강에 미세 그루브 가공시 가공상태 모니터링)

  • 이은상;곽철훈;김남훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.47-54
    • /
    • 2003
  • Research during the past several years has established the effectiveness of acoustic emission (AE)-based sensing methodologies for machine condition analysis and process. AE has been proposed and evaluated for a variety of sensing tasks as well as for use as a technique for quantitative studies of manufacturing process. STD11 has been known as difficult-to-cut materials. The micro-grooving machine was developed for this study and the experiments were performed using CBN blade for machining STD11. Evaluating the machining conditions, frequency spectrum analysis of acoustic emission (AE) signals according to each conditions were applied. Fuzzy clustering method for associating the preprocessor outputs with the appropriate decisions was followed by frequency spectrum analysis. FFT is used to decompose AE signal into different frequency bands in time domain, the root mean square (RMS) values extracted from the decomposed signal of each frequency band were used as features.

Signal Characteristics of Acoustic Emission from Welded Exhaust Flange for Fatigue Fracture Prediction (배기계 플랜지 용접부 피로파괴 예측을 위한 음향방출 신호 특성)

  • Son, Min-Young;Choi, Jung-Hwang;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.905-908
    • /
    • 2007
  • The purpose of this work is to obtain fundamental data about fatigue crack detection of the welded exhaust flange by using the AE method. The acoustic emission method as a nondestructive evaluation is one of high technical test for realtime monitoring in the dangerous industry fields. Signal analysis of both AE sensor and accelerometer for fatigue crack failure are presented in this paper.

  • PDF

Identification of Damage Characteristics for the Cracking of Concrete Strcuture Using Acoustic Emission (음향방출 특성을 이용한 콘크리트 부재종류 및 하중상태에 따른 균열손상 연구)

  • 오병환;권일범;김응재;김광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.543-546
    • /
    • 1999
  • The purpose of the present study is to identify the damage characteristics of concrete structures due to cracking by employing the acoustic emission techniques. A comprehensive experimental study has been done. The cracking damages under tensile and flexural loadings have been identified and the bond damage between steel and concrete have been also characterized. It is seen that the amplitudes and energy level of AE events is found to be smaller for bond cracking damages and larger for tensile cracking damages. The characteristic equations of the AE events for various cracking damages have been proposed based on the present test data. The internal microcracks are progressively developed ahead of a visible actual crack and the present study clearly exhibits thses damage mechanism for various types of cracking in concrete. The present study provides very useful data which can be used to identify the various types of cracking damages in concrete structures. This will allow very efficient maintenance of concrete structures through monitoring of internal cracking based on acoustic emission.

  • PDF

A Study on the Failure Behavior of Carbon Fiber Sheet Reinforced Mortar Using Acoustic Emission Technique (AE를 이용한 탄소섬유시트 강화 모르타르의 파괴거동에 관한 연구)

  • 이진경;이준현;장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.67-75
    • /
    • 2000
  • It was well recognized that the damages associated mainly with the aging of civil infrastructures were one of very serious problems for assurance of safety and reliability. Recently carbon fiber sheet(CFS) has been widely used for reinforcement and rehabilitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bending test has been carried out to understand the damage progress and the micro-failure mechanism of CFS reinforced mortars. For this purpose, four different types of specimens are used, that is, mortar, steel bar reinforced mortar, CFS reinforced mortar, and steel bar and CFS reinforced morter. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of specimens. in addition, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for these specimens.

The Damage Evaluation and Acoustic Emission Characteristics of the Unidirectional Ply CFRP Composite Materials in a Drilling Procedure (드릴작업중 발생되는 일방향 적층 CFRP 복합재료의 손상평가 및 AE특성)

  • Youn, Y.S.;Kwon, O.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.42-50
    • /
    • 1999
  • In recent years, composite materials like CFRP are increasingly used in various fields of engineering because of their unique properties which offer a high strength/density and high modulus/density. When CFRP structures are manufactured in drilling processes which are frequently practiced in an Industry, they bring on the delaminations sometimes. So, acoustic emission(AE) techniques were used for a condition monitoring of the drilling process in CFRP. In this study, the AE from CFRP estimated the delamination which reduces the strength and load carrying capacity under the drilling process and the initial delamination were well caught and measured by a video camera. From the results, it was found the relationships between failure mechanism of CFRP delamination and AE characteristics as like amplitude and count.

  • PDF

Optimization of Nano-machining parameters using Acoustic Emission and Taguchi Method (음향방출과 다구찌 방법을 이용한 나노머시닝 가공조건의 최적화)

  • 손정무;이성환;최장은
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.50-55
    • /
    • 2003
  • Atomic force microscope(AFM) techniques are increasingly used for tribological studies of engineering surfaces at scales ranging from atomic and molecular to microscale. AFM with suitable tips is being used for nanofabrication nanomachining purposes. In this paper, machining characteristics of silicon have been investigated by nano indentation and nano scratch. Mechanisms of material removal on the microscale are studied and the Taguchi method is introduced to acquire optimum parameters for nanomachining. This work shows effectiveness of the Taguchi method in nanomachining. Also, Acoustic Emission(AE) is introduced for the monitoring of nanomachining.

  • PDF

Acoustic Emission Monitoring of Milling Burr Formation Using Wavelet Transform (웨이브렛 변환을 이용한 밀링 버 생성 음향방출 모니터링)

  • Lee Seoung-Hwan;Ma Che-Hoon;Cho Yong-Won
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.22-28
    • /
    • 2006
  • Detection of exit burr is very important in manufacturing automation. In this paper, acoustic emission(AE) was used to detect the burr formation during milling. By using wavelet transformation, AE data was compressed without unnecessary details. Then the transformed data were used as selected features (inputs) of a back-propagation artificial neural net. In order to validate the proposed scheme, the wavelet based ANN results were compared with cutting condition(cutting speed, feed, depth of cut, etc.) based ANN results.

Optimization of Nano Machining Parameters Using Acoustic Emission and the Taguchi Method (음향방출과 다구찌 방법을 이용한 나노머시닝 가공조건의 최적화)

  • 이성환;손정무
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.163-170
    • /
    • 2004
  • Atomic force microscope (AFM) techniques are increasingly used fur tribological studies of engineering surfaces at scales ranging from atomic and molecular to micro-scale. Recently, AFM with suitable tips is being used for nano fabrication/nano machining purposes. In this paper, machining characteristics of silicon were investigated by nano indentation and nano scratch. Nano-scale material removal mechanisms are studied and the Taguchi method was introduced to acquire optimum parameters for nano machining. Also, Acoustic Emission (AR) is used for the monitoring of nano machining.

Neural Network Approach to Automated Condition Classification of a Check Valve by Acoustic Emission Signals

  • Lee, Min-Rae;Lee, Joon-Hyun;Song, Bong-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.509-519
    • /
    • 2007
  • This paper presents new techniques under development for monitoring the health and vibration of the active components in nuclear power plants, The purpose of this study is to develop an automated system for condition classification of a check valve one of the components being used extensively in a safety system of a nuclear power plant. Acoustic emission testing for a check valve under controlled flow loop conditions was performed to detect and evaluate disc movement for valve failure such as wear and leakage due to foreign object interference in a check valve, It is clearly demonstrated that the evaluation of different types of failure types such as disc wear and check valve leakage were successful by systematically analyzing the characteristics of various AE parameters, It is also shown that the leak size can be determined with an artificial neural network.

Acoustic Emission Source Location and Material Characterization Evaluation of Fiberboards (목재 섬유판의 음향방출 위치표정과 재료 특성 평가)

  • Ro Sing-Nam;Park Ik-Keum;Sen Seong-Won;Kim Yong-Kwon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.96-102
    • /
    • 2005
  • Acoustic Emission(AE) technique has been applied to not only material characterization evaluation but also on-line monitoring of the structural integrity. The AE source location technique is very important to identify the source, such as crack, leak detection. Since the AE waveforms obtained from sensors are very difficult to distinguish the defect signals, therefore, it is necessary to consider the signal analysis of the transient wave-form. In this study, we have divided the region of interest into a set finite elements, and calculated the arrival time differences between sensors by using the velocities at every degree from 0 to 90. A new technique for the source location of acoustic emission in fiberboard plates has been studied by introducing Wavelet Transform(WT) do-noising technique. WT is a powerful tool for processing transient signals with temporally varying spectra. If the WT de-noising was employed, we could successfully filter out the errors of source location in fiberboard plates by arrival time difference method. The accuracy of source location appeared to be significantly improved.