• 제목/요약/키워드: Acoustic emission monitoring

검색결과 292건 처리시간 0.028초

피로균열의 지연거동에 따른 수명예측 및 비파괴평가 (Life Prediction by Retardation Behavior of Fatigue Crack and its Nondestructive Evaluation)

  • 남기우;김선진
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.36-48
    • /
    • 1999
  • Fatigue life and crack retardation behavior after penetration were experimentally examined using surface pre-cracked specimens of aluminium alloy 5083. The Wheeler model retardation parameter was used successfully to predict crack growth behavior after penetration. By using a crack propagation rule, the change in crack shape after penetration can be evaluated quantitatively. Advanced, waveform-based acoustic emission (AE) techniques have been successfully used to evaluate signal characteristics obtained form fatigue crack propagation and penetratin behavior in 6061 aluminum plate with surface crack under fatigue stress. Surface defects in the structural members are apt to be origins of fatigue crack growth, which may cause serious failure of the whole structure. The nondestructive analysis on the crack growth and penetration from these defects may, therefore, be one of the most important subjects on the reliability of the leak before break (LBB) design. The goal of the present study is to determine if different sources of the AE could be identified by characteristics of the waveforms produced from the crack growth and penetration. AE signals detected in four stages were found to have different signal per stage. With analysis of waveform and power spectrum in 6061 aluminum alloys with a surface crack, it is found to be capabilities on real-time monitoring for the crack propagation and penetration behavior of various damages and defects in structural members.

  • PDF

Regularity and coupling correlation between acoustic emission and electromagnetic radiation during rock heating process

  • Kong, Biao;Wang, Enyuan;Li, Zenghua
    • Geomechanics and Engineering
    • /
    • 제15권5호
    • /
    • pp.1125-1133
    • /
    • 2018
  • Real-time characterization of the rock thermal deformation and fracture process provides guidance for detecting and evaluating thermal stability of rocks. In this paper, time -frequency characteristics of acoustic emission (AE) and electromagnetic radiation (EMR) signals were studied by conducting experiments during rock continuous heating. The coupling correlation between AE and EMR during rock thermal deformation and failure was analyzed, and the microcosmic mechanism of AE and EMR was theoretically analyzed. During rock continuous heating process, rocks simultaneously produce significant AE and EMR signals. These AE and EMR signals are, however, not completely synchronized, with the AE signals showing obvious fluctuation and the EMR signals increasing gradually. The sliding friction between the cracks is the main mechanism of EMR during the rock thermal deformation and fracture, and the AE is produced while the thermal cracks expanding. Both the EMR and AE monitoring methods can be applied to evaluate the thermal stability of rock in underground mines, although the mechanisms by which these signals generated are different.

전해 인프로세스 드레싱 연삭에서 AE를 이용한 가공안정성 감시에 관한 연구 (A Study on the Monitoring of Grinding Stability Using AE Sensor in Electrolytic In-Process Dressing Grinding)

  • 김태완;이종렬;이득우;송지복;최대봉
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.1011-1017
    • /
    • 1999
  • Electrolytic in-process dressing grinding technique which enables application of metal bond wheels with fine superabrasives in mirror surface grinding operations has developed. It is possible to make efficient precision machining of hard and brittle material such as ceramic and hard metal by the employment of this technique. However, in order to ensure the success of performances such as efficient machining, surface finish, and surface quality, it is important to sustain the insulating layer that has sharply exposed abrasives in wheel surface. Using AE(Acoustic Emission) sensor, this paper will show whether the insulating layer sustains stably or not in real grinding time. And by comparing AErms value and surface roughness their thresholds for stable electrolytic in-process dressing grinding will be determined.

음향방출법을 이용한 편측노치를 갖는 유리섬유/알루미늄 적층판의 파괴거동 해석 (A Study on Fracture Behaviors of Single-Edge-Notched Glass Fiber/Aluminum Laminates Using Acoustic Emission)

  • 우성충;최낙삼
    • Composites Research
    • /
    • 제18권2호
    • /
    • pp.1-12
    • /
    • 2005
  • 본 연구에서는 음향방출법을 이용하여 편측노치를 갖는 단일 Al판재 및 유리섬유/알루미늄 적층판에 대해 인장하중하의 파괴거동을 살펴보았다 단일 알루미늄의 AE신호는 2가지 형태로 분류될 수 있었다. 유리섬유i알루미늄 적층판의 경우에는, 고진폭의 긴 유지시간의 신호를 대상으로 한 FFT 주파수 해석 결과 이러한 신호들은 거시적인 균열진전 및 층간분리에 해당하는 신호임을 알았다. 또한 도달시간차를 이용한 위치표정은 균열의 개시 및 진전과정의 특징을 보여주었다. 위와 같은 AE해석과 파괴관찰을 토대로, 편측노치를 갖는 섬유/알루미늄 적층판의 파괴특성을 해명하였으며 이는 섬유층 배향 및 섬유/알루미늄층 구성비에 의존하여 변화하였다.

알루미나 세라믹에 대한 열충격 손상의 비파괴적 평가 (Nondestructive Evaluation of Thermal Shock Damage for Alumina Ceramics)

  • 이준현;이진경;송상헌
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1189-1196
    • /
    • 2001
  • The objective of this paper is to investigate the applicability of acoustic emission(AE) technique to monitor the progress of the thermal shock damage on alumina ceramic. For this purpose, alumina ceramic specimen was heated in the furnace and then was quenched in the water tank. When the specimen was quenched in the water tank, complex AE signals due to the initiation of micro-cracks and boiling effect were generated by the progress of thermal shock damage. These mixed AE signals have to be classified for monitoring the degree of the thermal shock damage of alumina ceramics. In this paper, the mixed AE signals generated from both the boiling effect and the crack initiation under thermal shock test was analyzed. The characteristics of AE signals were also discussed by considering the variation of bending strength and Yongs modulus of specimens.

ACOUSTIC EMISSION BEHAVIOR DURING STRESS CORROSION CRACKING OF INCONEL 600

  • Sung, Key-Yong;Cho, Sang-Jin;Kim, Bong-Hyun;Kim, In-Sup
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(3)
    • /
    • pp.145-150
    • /
    • 1996
  • Acoustic Emission (AE) technique was applied to stress corrosion cracking of Inconel 600 to investigate the AE capability of detecting crack growth and to obtain the relation between AE characteristics and crack mechanism. The specimens were heat-treated in two conditions (600$^{\circ}C$ for 30 hrs or 700 $^{\circ}C$ for 1 hr) and undergone CERT at two extension rates ( 2.5${\times}$10$^{-5}$ or 1.25${\times}$10$^{-4}$(mm/s)). It was found that the AE peak amplitude from plastic deformation was generally smaller than about 48dB (0.25mV), while Intergranular stress corrosion cracking (IGSCC) and ductile fracture produced higher values of 49 to 70dB (0.3mV to 3mV). The slopes of cumulative amplitude distribution (b-values) were linearly dependent on IGSCC susceptibility and the higher the susceptibility, the smaller the b-value. The monitoring of combined AE parameters such as event rate, amplitude, count and energy can provide effective means to clearly identify the transition from crack initiation and small crack growth to rapid growth of dominant cracks.

  • PDF

알루미늄 합금(Al6061-T6)의 마이크로밀링가공에서 버 발생과 신호 특성의 상관관계 분석 (Correlation Between Cutting Signal Characteristics and Microburr Formation in Micromilling of Al6061-T6 Alloy)

  • 김현중;구준영;윤지찬;이종환;김정석
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.401-409
    • /
    • 2016
  • The formation of micro-burrs in micro-milling processes causes several problems related to productivity and surface integrity. It should be minimized and suppressed by effective monitoring of the cutting conditions. This paper presents the correlation between the micro-burr length and cutting signals in the micro-milling process of an Al alloy (Al6061-T6). The acoustic emission (AE) signals and cutting force signals are acquired during the experiments. The characteristics of the cutting signals are obtained by analyzing the AE root mean square value and resultant cutting force. In addition, the micro-burr length is measured according to the cutting conditions by analyzing a scanning electron microscopy image of the machined surface. The results of this study can be used to enhance the surface quality of micro parts.

IED 초정밀 래핑을 통한 $Si_3N_4$/h-BN의 표면특성 분석 (Analysis of Surface Characteristics in the $Si_3N_4$/h-BN Ceramic by IED Ultra-Precision Lapping)

  • 황성철;이정택;이은상;조명우;조원승
    • 한국정밀공학회지
    • /
    • 제25권7호
    • /
    • pp.47-54
    • /
    • 2008
  • Recently, application of ceramics has increased gradually due to excellent mechanical properties. Si3n4-BN ceramic which is one of ceramics is very hard and has superior resistance against volatile temperature and wear. However, extremely high hardness of the $Si_3N_4-BN$ ceramic makes conventional machining very difficult. Therefore, the use of machinable ceramic has been in a poor because of difficult industrial processes in spite of many advantages. And so new technology being called IED(In-process electrolytic dressing) was introduced to solve this problem. The aim of this study is to determine the machining characteristics in terms of pressurized weight to the workpiece and the influence with h-BN content using IED lapping system. Also, Acoustic Emission (AE) is used for the monitoring of surface characteristics.

Sensing properties of optical fiber sensor to ultrasonic guided waves

  • Zhou, Wensong;Li, Hui;Dong, Yongkang;Wang, Anbang
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.471-484
    • /
    • 2016
  • Optical fiber sensors have been proven that they have the potential to detect high-frequency ultrasonic signals, in structural health monitoring field which generally refers to acoustic emission signals from active structural damages and guided waves excited by ultrasonic actuators and propagating in waveguide. In this work, the sensing properties of optical fiber sensors based on Mach-Zehnder interferometer were investigated in the metal plate. Analytical formulas were conducted first to explore the parameters affecting its sensing performances. Due to the simple and definable frequency component, the Lamb wave excited by the piezoelectric wafer was employed to study the sensitivity of the proposed optical fiber sensors with respect to the frequency, rather than the acoustic emission signals. In the experiments, according to above investigations, spiral shape optical fiber sensors with different size were selected to increase their sensitivity. Lamb waves were excited by a circular piezoelectric wafer, while another piezoelectric wafer was used to compare their voltage responses. Furthermore, by changing the excitation frequency, the tuning frequency characteristic of the proposed optical fiber sensor was also investigated experimentally.

Mechanical behavior of sandstones under water-rock interactions

  • Zhou, Kunyou;Dou, Linming;Gong, Siyuan;Chai, Yanjiang;Li, Jiazhuo;Ma, Xiaotao;Song, Shikang
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.627-643
    • /
    • 2022
  • Water-rock interactions have a significant influence on the mechanical behavior of rocks. In this study, uniaxial compression and tension tests on different water-treated sandstone samples were conducted. Acoustic emission (AE) monitoring and micro-pore structure detection were carried out. Water-rock interactions and their effects on rock mechanical behavior were discussed. The results indicate that water content significantly weakens rock mechanical strength. The sensitivity of the mechanical parameters to water treatment, from high to low, are Poisson ratio (𝜇), uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), elastic modulus (E), and peak strain (𝜀). After water treatment, AE activities and the shear crack percentage are reduced, the angles between macro fractures and loading direction are minimized, the dynamic phenomenon during loading is weakened, and the failure mode changes from a mixed tensile-shear type to a tensile one. Due to the softening, lubrication, and water wedge effects in water-rock interactions, water content increases pore size, promotes crack development, and weakens micro-pore structures. Further damage of rocks in fractured and caved zones due to the water-rock interactions leads to an extra load on the adjoining coal and rock masses, which will increase the risk of dynamic disasters.