• 제목/요약/키워드: Acoustic emission monitoring

검색결과 292건 처리시간 0.035초

Cluster and information entropy analysis of acoustic emission during rock failure process

  • Zhang, Zhenghu;Hu, Lihua;Liu, Tiexin;Zheng, Hongchun;Tang, Chun'an
    • Geomechanics and Engineering
    • /
    • 제25권2호
    • /
    • pp.135-142
    • /
    • 2021
  • This study provided a new research perspective for processing and analyzing AE data to evaluate rock failure. Cluster method and information entropy theory were introduced to investigate temporal and spatial correlation of acoustic emission (AE) events during the rock failure process. Laboratory experiments of granite subjected to compression were carried out, accompanied by real-time acoustic emission monitoring. The cumulative length and dip angle curves of single links were fitted by different distribution models and distribution functions of link length and directionality were determined. Spatial scale and directionality of AE event distribution, which are characterized by two parameters, i.e., spatial correlation length and spatial correlation directionality, were studied with the normalized applied stress. The entropies of link length and link directionality were also discussed. The results show that the distribution of accumulative link length and directionality obeys Weibull distribution. Spatial correlation length shows an upward trend preceding rock failure, while there are no remarkable upward or downward trends in spatial correlation directionality. There are obvious downward trends in entropies of link length and directionality. This research could enrich mathematical methods for processing AE data and facilitate the early-warning of rock failure-related geological disasters.

AE와 MS 이벤트를 이용한 계측기술 (Monitoring Technique using Acoustic Emission and Microseismic Event)

  • 천대성;정용복;박철환;신중호;박의섭
    • 터널과지하공간
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 2008
  • 미소파괴음(Acoustic Emission, AE)과 미소지진음(Microseismic event, MS event)은 응력의 재분배에 의한 균열이 생성될 때 나오는, 순간적인 에너지 방출에 의한 탄성파이다. AE/MS 이벤트는 일반적으로 대규모의 파괴에 앞서 그 발생이 현저해지는 경향이 있다. 이들은 계측영역의 주파수 대역에 따라 구분되며, MS이벤트에 비해 상대적으로 고주파의 AE 신호는 보다 미세한 파괴를 검출할 수 있다. 일반적으로 암반구조물은 파괴되기까지 작은 변형이 발생하여 종래에 사용되고 있는 변위계측으로는 그 전조현상을 포착하기 어렵기 때문에 국부적인 파괴나 갑작스러운 파괴에 대한 사전예측이 어려운 현실이다. 그러나 AE/MS 이벤트의 파형을 측정할 수 있는 경우 암반구조물의 파괴를 사전에 예측할 수 있으며, 초동이 명확한 경우 미세한 파괴위치지점과 함께 파괴메커니즘의 규명도 가능하다. 본 보고에서는 AE/MS 이벤트에 대한 기본이론과 함께 이들 활용한 계측기술 개발현황과 적용사례 등을 소개한다.

음향방출법(AE)에 의한 기계요소재의 마찰용접 품질 실시간 평가 (REAL-TIME QUALITY EVALUATION OF FRICTION WELDING OF MACHINE COMPONENTS BY ACOUSTIC EMISSION)

  • SAE-KYOO OH
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1995년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.3-20
    • /
    • 1995
  • Development of Real-Time Quality Evaluation of Friction Welding by Acousitc Emission : Report 1 ABSTRACT : According as the friction welding has been increasingly applied in manufacturing various machine components because of its significant economic and technical advantages, one of the important concerns is the reliable quality monitoring method for a good weld quality with both joint strength and toughness in the process of its production. However no reliable nondestructive test method is available at present to determine the weld quality particularly in process of production. So this paper presents an experimental examination and quantitative analysis for the real-time evaluation of friction weld quality by acoustic emission, as a new approach which attempts finally to develop an on-line quality monitoring system design for friction welds using AE techniques. As one of the important results, it was confirmed, through this study, that AE techniques can be reliably applied to evaluating the friction weld qualify with 100% joint strength, as the cumulative AE counts occurring during welding period were quantitatively correlated with reliability at 95% confidence level to the joint strength of welds. Real-Time Evaluation of Automatic Production Quality Control for Friction Welding Machine : Report 2 Abstract : Both in-process quality control and high reliability of the weld is one of the major concerns in applying friction welding to the economical and qualified mass-production. No reliable nondestructive monitoring method is available at present to determine the real-time evaluation of automatic production quality control for friction welding machine. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the initial cumulative counts of acoustic emission(AE) occurring during plastic deformation period of the welding and the tensile strength of the welded joints as well as the various welding variables, as a new approach which attempts finally to develop an on-line (or real-time) quality monitoring system and a program for the process of real-time friction welding quality evaluation by initial AE cumulative counts. As one of the important results, it was well confirmed that the initial AE cumulative counts were quantitatively and cubically correlated with reliability of 95% confidence level to the joint strength of the welds, bar-to-bar (SCM4 to SUM31, SCM4 to SUM24L) and that an AE technique using initial AE counts can be reliably applied to real-time strength evaluation of the welded joints, and that such a program of the system was well developed resulting in practical possibility of real-time quality control more than 100% joint efficiency showing good weld with no micro-structural defects.

  • PDF

이트리아($Y_2O_3$) 세라믹 래핑가공의 AE 신호 분석 (AE Signal Analysis of Yttria($Y_2O_3$) Ceramic Lapping Process)

  • 차지완;황성철;신태희;이은상
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.7-14
    • /
    • 2010
  • AE(acoustic emission) sensor has been used for a state monitoring and observation during a ultra-precision machining because AE signal, which has high frequency range, is sensitive enough. In case of ceramic fabrication, a monitoring of machining state is important because of its hard and brittle nature. A machining characteristic of ceramic is susceptibly different in accordance with variable machining conditions. In this study, Yttria($Y_2O_3$) ceramic was fabricated using the ultra-precision lapping process with in-process electrolytic dressing(IED) method. And the surface machining characteristic and AE sensor signal were compared and analyzed.

AE 센서를 이용한 Check Valve 상태감시 시스템 구현 (Realization of Check Valve Condition Monitoring system using AE sensor)

  • 전정섭;이승연;백승문;유준;김정수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.49-51
    • /
    • 2004
  • This paper presents a realization of fault detection algorithm and Fieldbus based communication for condition monitoring of check valve. We first acquired the AE(Acoustic Emission) sensor data at the KAERI check valve test loop, extract fault features through the learned Neural network, and send the processed data to a remote site. The overall system has been implemented and experimental results are given to show its effectiveness.

  • PDF

Condition Monitoring of Check Valve Using Neural Network

  • Lee, Seung-Youn;Jeon, Jeong-Seob;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2198-2202
    • /
    • 2005
  • In this paper we have presented a condition monitoring method of check valve using neural network. The acoustic emission sensor was used to acquire the condition signals of check valve in direct vessel injection (DVI) test loop. The acquired sensor signal pass through a signal conditioning which are consisted of steps; rejection of background noise, amplification, analogue to digital conversion, extract of feature points. The extracted feature points which represent the condition of check valve was utilized input values of fault diagnosis algorithms using pre-learned neural network. The fault diagnosis algorithm proceeds fault detection, fault isolation and fault identification within limited ranges. The developed algorithm enables timely diagnosis of failure of check valve’s degradation and service aging so that maintenance and replacement could be preformed prior to loss of the safety function. The overall process has been experimented and the results are given to show its effectiveness.

  • PDF

모르터와 콘크리트의 균열검출을 위한 음향방출기법의 적용 (Application of Acoustic Emission Technique for Detection of Crack in Mortar and Concrete)

  • 진치섭;신동익;장종철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.739-744
    • /
    • 2000
  • Concrete structures generally have cracks, so for the safety and durability of structures, studies to detect cracks using nondestructive tests have been treated in great deal. In order to assure the reliability of concrete structure, microscopic fracture behavior and internal damage progress of concrete under the loading should be fully understood. The purpose of this study predicts location of initial crack and measures direction of crack propagation for on-line monitoring before the crack really grows in structures by using two-dimensional Acoustic Emission(AE) source location based on rectangular method with three-point bending test. This will allow efficient maintenance of concrete structure through monitoring of internal cracking based on AE method.

  • PDF

압전고분자 센서를 이용한 복합재 구조의 실시간 손상탐지 (Realtime Detection of Damage in Composite Structures by Using PVDE Sensor)

  • 권오양
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.118-121
    • /
    • 2002
  • Polyvinylidene di-fluoride (PVDF) film sensor appeared to be practically useful for the structural health monitoring of composite materials and structures. PVDF film sensors were either attached to or embedded in the graphite/epoxy composite (CFRP) samples to detect the fatigue damage at the bondline of single-lap joints or the tensile failure of unidirectional laminates. PVDF sensors were sensitive enough to detect and determine the crack front in linear location since composites usually produce very energetic acoustic emission (AE). PVDF sensors are extremely cost-effective, as flexible as other plastic films, in low profile as thin as a few tens of microns, and have relatively wide-band response, all of which characteristics are readily utilized for the structural health monitoring of composite structures. Signals due to fatigue damage showed a characteristics of mode II (shear) type failure whereas those from fiber breakage at DEN notches showed that of mode I (tensile) type fracture.

  • PDF

미세가공면의 상태 감시를 위한 다중신호특성에 관한 연구 (Multi-signal characteristics for condition monitoring of micro machined surface)

  • 장수훈;박진효;강익수;김정석
    • 한국기계가공학회지
    • /
    • 제8권1호
    • /
    • pp.31-36
    • /
    • 2009
  • Micro-machining technology has been adopted for shape accuracy of micrometer and sub-micrometer scale, surface roughness of tens nanometer in industries. In micro-machining process the quality of machined surface is derived from machining condition and tooling. This paper investigates AE(acoustic emission) and cutting force signals according to machined surface quality related to machining condition. Machined surface quality was analyzed by the AE and cutting force parameter which reflect surface morphology. The characteristics of signal were extracted for process optimization by monitoring both the tool condition and the machined surface texture in micro end milling process.

  • PDF

Fatigue damage monitoring and evolution for basalt fiber reinforced polymer materials

  • Li, Hui;Wang, Wentao;Zhou, Wensong
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.307-325
    • /
    • 2014
  • A newly developed method based on energy is presented to study the damage pattern of FRP material. Basalt fiber reinforced polymer (BFRP) is employed to monitor the damage under fatigue loading. In this study, acoustic emission technique (AE) combined with scanning electronic microscope (SEM) technique is employed to monitor the damage evolution of the BFRP specimen in an approximate continuous scanning way. The AE signals are analyzed based on the wavelet transform, and the analyses are confirmed by SEM images. Several damage patterns of BFRP material, such as matrix cracking, delamination, fiber fracture and their combinations, are identified through the experiment. According to the results, the cumulative energy (obtained from wavelet coefficients) of various damage patterns are closely related to the damage evolution of the BFRP specimens during the entire fatigue tests. It has been found that the proposed technique can effectively distinguish different damage patterns of FRP materials and describe the fatigue damage evolution.