• Title/Summary/Keyword: Acoustic data

Search Result 1,424, Processing Time 0.021 seconds

Analysis of Semantic Attributes of Korean Words for Sound Quality Evaluation in Music Listening (음악감상에서의 음질 평가를 위한 한국어 어휘의 의미론적 속성 분석)

  • Lee, Eun Young;Yoo, Ga Eul;Lee, Youngmee
    • Journal of Music and Human Behavior
    • /
    • v.21 no.2
    • /
    • pp.107-134
    • /
    • 2024
  • This study aims to classify the semantic words commonly used to evaluate sound quality and to analyze their differences in reflecting the level of musical stimuli. Participants were thirty-one music majors in their 20s and 30s, with an average of 9.4 years of professional training. Each participant listened to nine pieces of music with variations in texture and instrument type and evaluated them using 18 pairs of semantic words describing sound quality. A factor analysis was conducted to group words influenced by the same latent factor, and a multivariate ANOVA determined the differences in ratings based on texture and instrument type. Radar charts were also drawn based on the identified sets of semantic words. The results showed that four factors were identified, and the word pairs 'soft-hard,' 'dull-sharp,' 'muddy-clean' and 'low-high' showed significant differences based on the level of musical stimuli. The radar charts effectively distinguished the sound quality evaluations for each music. These results indicate that developing Korean semantic words for sound quality evaluation requires a structure different from the previous categories used in Western countries and that linguistic and cultural factors are crucial. This study will provide foundational data for developing a verbal sound quality evaluation framework suited to the Korean context, while reflecting acoustic attributes in music listening.

Accuracy Analysis of ADCP Stationary Discharge Measurement for Unmeasured Regions (ADCP 정지법 측정 시 미계측 영역의 유량 산정 정확도 분석)

  • Kim, Jongmin;Kim, Seojun;Son, Geunsoo;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.553-566
    • /
    • 2015
  • Acoustic Doppler Current Profilers(ADCPs) have capability to concurrently capitalize three-dimensional velocity vector and bathymetry with highly efficient and rapid manner, and thereby enabling ADCPs to document the hydrodynamic and morphologic data in very high spatial and temporal resolution better than other contemporary instruments. However, ADCPs are also limited in terms of the inevitable unmeasured regions near bottom, surface, and edges of a given cross-section. The velocity in those unmeasured regions are usually extrapolated or assumed for calculating flow discharge, which definitely affects the accuracy in the discharge assessment. This study aimed at scrutinizing a conventional extrapolation method(i.e., the 1/6 power law) for estimating the unmeasured regions to figure out the accuracy in ADCP discharge measurements. For the comparative analysis, we collected spatially dense velocity data using ADV as well as stationary ADCP in a real-scale straight river channel, and applied the 1/6 power law for testing its applicability in conjunction with the logarithmic law which is another representative velocity law. As results, the logarithmic law fitted better with actual velocity measurement than the 1/6 power law. In particular, the 1/6 power law showed a tendency to underestimate the velocity in the near surface region and overestimate in the near bottom region. This finding indicated that the 1/6 power law could be unsatisfactory to follow actual flow regime, thus that resulted discharge estimates in both unmeasured top and bottom region can give rise to discharge bias. Therefore, the logarithmic law should be considered as an alternative especially for the stationary ADCP discharge measurement. In addition, it was found that ADCP should be operated in at least more than 0.6 m of water depth in the left and right edges for better estimate edge discharges. In the future, similar comparative analysis might be required for the moving boat ADCP discharge measurement method, which has been more widely used in the field.

Crustal Characteristics and Structure of the Ulleung Basin, the East Sea (Japan Sea), Inferred from Seismic, Gravity and Magnetic Data (탄성파 및 중자력자료에 의한 울릉분지의 지각특성 및 구조 연구)

  • Huh, Sik;Kim, Han-Jun;Yoo, Hai-Soo;Park, Chan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.95-104
    • /
    • 2000
  • Depths to four seismic sequence boundaries and the thickness of each sequence were estimated and mapped based on multi-channel seismic data in the Ulleung Basin. These depth-structure and isopach maps were incorporated into the interpretation of gravity and magnetic anomaly maps. The sediment thickness ranges from 3,000 m to 4,000 m in the central basin, while it reaches 6,000 m locally along the southwestern, western, and southeastern margins. The acoustic basement forms a northeast-southwest elongated depression deeper than 5000 m, and locally deepens up to 7,500 m in the southwestern and western margins. Low gravity anomalies along the western and southern margins are associated with basement depressions with thick sediment as well as the transitional crust between the continental and oceanic crusts. Higher gravity anomalies, dominant in the central Ulleung basin, broaden from southwest toward northeast, are likely due to the shallow mantle and a dense crust. A pair of magnetic elongations in the southeastern and northwestern margins appear to separate the central Ulleung basin from its margin. These magnetic elongations are largely dominated by intrusive or extrusive volcanics which occurred along the rifted margin of the Ulleung basin formed during the basin opening. The crust in the central Ulleung Basin, surrounded by the magnetic elongations, is possibly oceanic as inferred from the seismic velocity. The oceanic crust can be mapped in the central zone where it widens to 120 km from the southwest toward northeast. Bending of the crustal boundary in the southern part of the Ulleung Basin suggests that the Ulleung Basin has been deformed by a collision of the Phillipine plate into the Japan arc.

  • PDF

Predictive Modeling of Bacillus cereus on Carrot Treated with Slightly Acidic Electrolyzed Water and Ultrasonication at Various Storage Temperatures (미산성 차아염소산수와 초음파를 처리한 당근에서 저장 중 Bacillus cereus 균의 생육 예측모델)

  • Kim, Seon-Young;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1296-1303
    • /
    • 2014
  • This study was conducted to develop predictive models for the growth of Bacillus cereus on carrot treated with slightly acidic electrolyzed water (SAcEW) and ultrasonication (US) at different storage temperatures. In addition, the inactivation of B. cereus by US with SAcEW was investigated. US treatment with a frequency of 40 kHz and an acoustic energy density of 400 W/L at $40^{\circ}C$ for 3 min showed the maximum reduction of 2.87 log CFU/g B. cereus on carrot, while combined treatment of US (400 W/L, $40^{\circ}C$, 3 min) with SAcEW reached to 3.1 log CFU/g reduction. Growth data of B. cereus on carrot treated with SAcEW and US at different temperatures (4, 10, 15, 20, 25, 30, and $35^{\circ}C$) were collected and used to develop predictive models. The modified Gompertz model was found to be more suitable to describe the growth data. The specific growth rate (SGR) and lag time (LT) obtained from the modified Gompertz model were employed to establish the secondary models. The newly developed secondary models were validated using the root mean square error, bias factor, and accuracy factor. All results of these factors were in the acceptable range of values. After compared SGR and LT of B. cereus on carrot, the results showed that the growth of B. cereus on carrot treated with SAcEW and US was slower than that of single treatment. This result indicates that shelf life of carrot treated with SAcEW and US could be extended. The developed predictive models might also be used to assess the microbiological risk of B. cereus infection in carrot treated with SAcEW and US.

A Seismic Study on Muddy Sediment Deposits in the Northern Shelf of the East China Sea (동중국해 북부대륙붕에 발달한 니질 퇴적체의 탄성파 연구)

  • Choi Dong-Lim;Lee Tae-Hee;Yoo Hae-Soo;Lim Dhong-Il;Huh Sik;Kim Kwang-Hee
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.633-642
    • /
    • 2005
  • We present the sedimentary sequence and distribution pattern of the late Holocene muddy deposits in the northern East China Sea shelf using the high-resolution 'Chirp' profiles. The seismic sedimentary sequence overlying acoustic basement (basal reflector-B) can be divided into two depositional units (Unit 1 and 2) bounded by erosional bounding surface (mid reflector-M). The lower Unit 1 above basal reflector-H is characterized by the acoustically parallel to subparallel reflections and channel-fill facies. The upper Unit 2, up to 7 m in thickness, shows seismically semi-transparent seismic facies and lenticular body form. On the base of sequence stratigraphic concept, these two sediment units have developed during transgression and highstand period, respectively, since the last sea-level lowstand. The transgressive systems tract (Unit 1) lie directly on the sequence boundary (reflector B) that have farmed during the last glacial maximum. The transgressive systems tract in this study consists mostly of complex of delta, fluvial, and tidal deposits within the incised valley estuary system. The maximum flooding surface (reflector M) corresponding to the top surface of transgressive systems tract is obviously characterized by erosional depression. The highstand systems tract (Unit 2) above maximum flooding surface is made up of the mud patch filled with the erosional depression. The high-stand mud deposits showing a circle shape just like a typhoon symbol locates about 140 km off the south of Cheju Island with water depth of $60\~90m$. Coverage area and total sediment volume of the mud deposits are about $3,200km^2$ and $10.7\times10^9\;m^3$, respectively. The origin of the mud patch is interpreted as a result of accumulating suspended sediments derived from the paleo-Yellow and/or Yangtze Rivers. The circular distribution pattern of the mud patch appears to be largely controlled by the presence of cyclonic eddy in the northern East China Sea.

Acceleration of computation speed for elastic wave simulation using a Graphic Processing Unit (그래픽 프로세서를 이용한 탄성파 수치모사의 계산속도 향상)

  • Nakata, Norimitsu;Tsuji, Takeshi;Matsuoka, Toshifumi
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.98-104
    • /
    • 2011
  • Numerical simulation in exploration geophysics provides important insights into subsurface wave propagation phenomena. Although elastic wave simulations take longer to compute than acoustic simulations, an elastic simulator can construct more realistic wavefields including shear components. Therefore, it is suitable for exploration of the responses of elastic bodies. To overcome the long duration of the calculations, we use a Graphic Processing Unit (GPU) to accelerate the elastic wave simulation. Because a GPU has many processors and a wide memory bandwidth, we can use it in a parallelised computing architecture. The GPU board used in this study is an NVIDIA Tesla C1060, which has 240 processors and a 102 GB/s memory bandwidth. Despite the availability of a parallel computing architecture (CUDA), developed by NVIDIA, we must optimise the usage of the different types of memory on the GPU device, and the sequence of calculations, to obtain a significant speedup of the computation. In this study, we simulate two- (2D) and threedimensional (3D) elastic wave propagation using the Finite-Difference Time-Domain (FDTD) method on GPUs. In the wave propagation simulation, we adopt the staggered-grid method, which is one of the conventional FD schemes, since this method can achieve sufficient accuracy for use in numerical modelling in geophysics. Our simulator optimises the usage of memory on the GPU device to reduce data access times, and uses faster memory as much as possible. This is a key factor in GPU computing. By using one GPU device and optimising its memory usage, we improved the computation time by more than 14 times in the 2D simulation, and over six times in the 3D simulation, compared with one CPU. Furthermore, by using three GPUs, we succeeded in accelerating the 3D simulation 10 times.

Target Strength of Schlegel′s Black Rockfish (Sebastes schlegeli)and Red Seabream (Pagrus major) (조피볼락과 참돔의 표적 강도에 관한 연구)

  • 손창환;황두진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.2
    • /
    • pp.119-128
    • /
    • 2002
  • This study investigates dorsal aspect target strength with fish size, tilt angle and frequency characteristics for the schlegel's black rockfish(Sebastes achlegeli) and the red seabream (Pagrus major). This study was carried out on free swimming fish in a cage in order to obtain acoustic data of the biomass estimation using the scientific echo sounder. The results obtained from this study are summarized as follows; 1 The coefficients of the schlegel's black rockfish and the red seabream using maximum TS with fish length were expressed -63.7dB and -62.6dB at a frequency of 38kHz, -64.4dB and -65.4dB at 120kHz, and -62.4dB and -65.0dB at 200kHz, respectively. 2. The coefficients of the schlegel\`s black rockfish and the red seabream using averaged TS with fish length were expressed -68.4dB and -67.9dB at a frequency of 38kHz, -73.4dB and -72.7dB at 120kHz, and -70.BdE and -73.4dB at 2001Hs, respectively. 3. The coefficients of the schlegel's black rockfish and the red seabream using maximum TS with body weight were expressed -52.0dB and -50.9dB at a frequency of 38kHz, -52.7dB and -53.7dB at 120kHz, and -50.7dB and -53.3dB at 200kHz, respectively. 4. The coefficients of the schlegel's black rockfish and the red seabream using averaged TS with body weight were expressed -56.7dB and -56.2dB at a frequency of 38kHz, -61.7dB and -61.0dB at 120kHz, and -59.ldE and -61.6dB at 200kHz, respectively. 5. Varying the tiIt angle of the two red seabream from -26$^{\circ}$to +25$^{\circ}$, the variation width of target strength expressed smaller at a frequency of 38kHz than at 120kHz and expressed about 3~6dB higher head up than head down at 120kHz.

Studies on Estimation of Fish Abundance Using an Echo Sounder ( 2 ) - The Relationship between Acoustic Backscattering Strength and Distribution Density of Fish in a Net Cage- (어군탐지기에 의한 어군량 추정에 관한 기초적 연구 ( 2 ) - 어군의 분포밀도와 초음파산란강도의 관계 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.13-20
    • /
    • 1991
  • This paper describes the fish-density dependence of the mean backscattering strength with aggregations of encaged, free-swimming fish of known density in relation to the experimental verification of echo-integration technique for estimating the density of fish shoals. In this experiment, various numbers of gold crussian, Carassius burgeri burgeri, with a mean length of 18.5cm and a mean weight of 205.9g, were introduced into a net cage of approximately 0.76m super(3). During the backscattering measurements. the cage was suspended on the sound axis of the 50kHz transducer having a beam width of 33 degrees at -3dB downpoints. The volume backscattering strengths from fish aggregations were measured as a function of fish density. Data acquisition, processing and analysis were performed by means of the microcomputer-based sonar-echo processor including a FFT analyzer. The calibration of echo-sounder system was carried out at field with a steel ball bearing of 38mm in diameter having the target strength of -40.8dB. The dorsal-aspect target strengths on anesthetized specimens of gold crussian used in the cage experiment were measured and compared with the target strength predicted by the fish density-echo energy relationship for aggregations of free-swimming gold crussian in the cage. The results obtained can be summarized as follows: 1. The target strengths in the dorsal aspect on anesthetized specimens of gold crussian, with the mean length of 19.1cm and the mean weight of 210.5g, varied from -40.9dB to -44.8dB with a mean of -42.6dB. This mean target strength did not differ significantly from that predicted by the regression of echo energy on fish density of free-swimming gold crussian in the cage. It suggests that the target-strength measurements on anesthetized fish was valid and can be representative for live, free-swimming fish. 2. The relationship between mean backscattering strength(, dB) and distribution density of gold $crussian(\rho, $ fish/m super(3)) was expressed by the following equation; =-41.9+11 $Log(\rho)$ with a correlation coefficient of 0.97. This result support the existence of a linear relationship between fish density and echo energy, but suggest that this line has steeper slope than the regression by the theory of estimating the density of fish schools.

  • PDF

Drumming bioacoustics of woodpeckers in South Korea (한국에 서식하는 딱다구리목 드러밍의 생물음향학적 특성 연구)

  • Ki, Kyong-Seok;Hong, Suk-Hwan;Gim, Ji-Yeun
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.4
    • /
    • pp.404-410
    • /
    • 2014
  • In this study, we conducted an analysis of the drumming bioacoustics of three woodpeckers typical to South Korea. The targeted species were, from largest to smallest in size, the Black Woodpecker(Dryocopus martius), the Great Spotted Woodpecker(Dendrocopos major) and the Japanese Pygmy Woodpecker(Dendrocopos Kizuki). The drumming sounds of these three species of woodpeckers were recorded and analyzed. Sound recordings were taken in the Guryongsa Valley, Chiaksan National Park and on the campus of Sangji University, Wonju City, South Korea. Drumming recordings were obtained in the following manner. As researchers walked along trails in the investigation areas, when woodpecker drumming sounds were indicated, positive identification of the species was made using binoculars then the recording of the drumming sound was started. The average time per drumming, in seconds, was Black Woodpecker(D. martius) 1.614 seconds, Great Spotted Woodpecker(D. major) 0.683 seconds and Japanese Pygmy woodpecker(D. Kizuki) 0.200 seconds. The average number of strikes for each drumming was Black Woodpecker(D. martius) 31.2 times, Great Spotted Woodpecker(D. major) 14.9 times and Japanese Pygmy Woodpecker(D. Kizuki) 6.7 times. The strike speed, in strikes/sec, for each species was the Black Woodpecker(D. martius)19.3strikes/sec, the Great Spotted Woodpecker(D. major) 21.8strikes/sec and Japanese Pygmy Woodpecker(D. Kizuki)33.3strikes/sec. The frequency of drumming, in Hertz, was Black Woodpecker(D. martius) 776.9Hz, Great Spotted Woodpecker (D. major) 1,213.8Hz and Japanese Pygmy Woodpecker(D. Kizuki) 826.0Hz. In interpreting this data, Analysis of Variance (ANOVA) was used and it was determined that there was a significant statistical difference between species in drumming duration, time and interval of striking. The findings support that the bigger the biomass of the woodpecker, the longer the drumming duration and striking time. However, the smaller the size of the woodpecker, the faster the strike speed. A correlation between body type size and drumming characteristics was clearly identified. As for strike frequency, measured in Hertz, the medium sized Great Spotted Woodpecker's (D. major) frequency was high whereas the Black Woodpecker(D. martius) and Japanese Pygmy Woodpecker's(D. Kizuki) frequency was similar. A clear trend in reference to body size on this measure does not exist.

Seismic Stratigraphy and Evolutionary History of Submarine Canyon in the Northwestern Part of the Ulleung Basin, East Sea (동해 울릉분지 북서해역에 분포하는 해저협곡의 탄성파 층서와 발달사)

  • Kim, Ji Hyun;Kang, Nyeon Keon;Yi, Bo Yeon;Park, Yong Joon;Yoo, Dong Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.146-162
    • /
    • 2017
  • Multibeam and seismic data in the northwestern part of the Ulleung Basin were analyzed to study stratigraphy and evolutionary history of submarine canyon. A detailed analysis reveals that the sedimentary sequences in this area consist of four stratigraphic units separated by erosional unconformities. On the continental slope, these units are dominated by well-stratified facies with some slope failures, whereas these units show well-stratified and chaotic facies toward the basin floor. Generally, the sediment thickness is relatively thin on the slope, whereas thick sediment accumulation occurs on the base of slope and basin floor. Based on seismic characteristics and distribution, the deposition of each units are well correlated with the evolutionary history of the submarine canyon. Unit 1 directly overlying the acoustic basement has thin sediment layer on the slope, whereas its thickness gradually increase toward the basin floor. Compared to other units, Unit 2 is relatively thick accumulations on the slope and contains some slope failures related to faults systems. The mass transport sediments due to slope failures, mainly deposited on the base of slope as a submarine fan. The width and depth of submarine canyon increase due to dominant of the erosional process rather than the sediment deposition. Unit 3 is thin accumulation on the slope around the submarine canyon. Toward the basin floor, its thickness gradually increases. Unit 4 is characterized by thin layers including slides and slumps on the slope, whereas it formed thick accumulations at the base of slope as a submarine fan. The increase in the width and depth of submarine canyon results from the dominant of the erosional process and slope failures around the submarine canyon. Consequently, the formation of sedimentary units combined with the development of submarine canyon in this area is largely controlled by the amounts of sediment supply originated from slope failures, regional tectonic effects and sea-level fluctuations.